Abstract
We have investigated whether cell surface changes associated with growth control and malignant transformation are linked to the cell cycle. Chicken embryo cells synchronized by double thymidine block were examined for cell-cycle-dependent alterations in membrane function (measured by transport of 2-deoxyglucose, uridine, thymidine, and mannitol), in cell surface morphology (examined by scanning electron microscopy), and in the ability of tumor virus gene expression to induce a transformation-specific change in membrane function. We reach the following conclusions: (a) The high rate of 2-deoxyglucose transport seen in transformed cells and the low rates of 2-deoxyglucose and uridine transport characteristic of density-inhibited cells do not occur in normal growing cells as they traverse the cell cycle. (b) Although there are cell cycle-dependent changes in surface morphology, they are not reflected in corresponding changes in membrane function. (c) Tumor virus gene expression can alter cell membrane function at any stage in the cell cycle and without progression through the cell cycle.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bader J. P. Virus-induced transformation without cell division. Science. 1973 Jun 8;180(4090):1069–1071. doi: 10.1126/science.180.4090.1069. [DOI] [PubMed] [Google Scholar]
- Cunningham D. D., Remo R. A. Specific increase in pyrimidine deoxynucleoside transport at the time of deoxyribonucleic acid synthesis in 3T3 mouse cells. J Biol Chem. 1973 Sep 25;248(18):6282–6288. [PubMed] [Google Scholar]
- Eckhart W., Dulbecco R., Burger M. M. Temperature-dependent surface changes in cells infected or transformed by a thermosensitive mutant of polyoma virus. Proc Natl Acad Sci U S A. 1971 Feb;68(2):283–286. doi: 10.1073/pnas.68.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eckhart W., Weber M. Uptake of 2-deoxyglucose by BALB-3T3 cells: changes after polyoma infection. Virology. 1974 Sep;61(1):223–228. doi: 10.1016/0042-6822(74)90256-6. [DOI] [PubMed] [Google Scholar]
- Hatanaka M., Hanafusa H. Analysis of a functional change in membrane in the process of cell transformation by Rous sarcoma virus; alteration in the characteristics of sugar transport. Virology. 1970 Aug;41(4):647–652. doi: 10.1016/0042-6822(70)90429-0. [DOI] [PubMed] [Google Scholar]
- Kletzien R. F., Perdue J. F. Sugar transport in chick embryo fibroblasts. II. Alterations in transport following transformation by a temperature-sensitive mutant of the Rous sarcoma virus. J Biol Chem. 1974 Jun 10;249(11):3375–3382. [PubMed] [Google Scholar]
- Martin G. S., Venuta S., Weber M., Rubin H. Temperature-dependent alterations in sugar transport in cells infected by a temperature-sensitive mutant of Rous sarcoma virus. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2739–2741. doi: 10.1073/pnas.68.11.2739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noonan K. D., Levine A. J., Burger M. M. Cell cycle-dependent changes in the surface membrane as detected with (3H)concanavalin A. J Cell Biol. 1973 Aug;58(2):491–497. doi: 10.1083/jcb.58.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PETERSEN D. F., ANDERSON E. C. QUANTITY PRODUCTION OF SYNCHRONIZED MAMMALIAN CELLS IN SUSPENSION CULTURE. Nature. 1964 Aug 8;203:642–643. doi: 10.1038/203642a0. [DOI] [PubMed] [Google Scholar]
- PUCK T. T. STUDIES OF THE LIFE CYCLE OF MAMMALIAN CELLS. Cold Spring Harb Symp Quant Biol. 1964;29:167–176. doi: 10.1101/sqb.1964.029.01.021. [DOI] [PubMed] [Google Scholar]
- Plagemann P. G. Deoxyglucose transport of uninfected, murine sarcoma virus-transformed, and murine leukemia virus-infected mouse cells. J Cell Physiol. 1973 Dec;82(3):421–433. doi: 10.1002/jcp.1040820312. [DOI] [PubMed] [Google Scholar]
- Plagemann P. G. Nucleotide pools of Novikoff rat hepatoma cells growing in suspension culture. I. Kinetics of incorporation of nucleosides into nucleotide pools and pool sizes during growth cycle. J Cell Physiol. 1971 Apr;77(2):213–240. doi: 10.1002/jcp.1040770212. [DOI] [PubMed] [Google Scholar]
- Porter K., Prescott D., Frye J. Changes in surface morphology of Chinese hamster ovary cells during the cell cycle. J Cell Biol. 1973 Jun;57(3):815–836. doi: 10.1083/jcb.57.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato T. Multiple sensitivity of single taste cells of the frog tongue to four basic taste stimuli. J Cell Physiol. 1972 Oct;80(2):207–218. doi: 10.1002/jcp.1040800207. [DOI] [PubMed] [Google Scholar]
- Sefton B. M., Rubin H. Release from density dependent growth inhibition by proteolytic enzymes. Nature. 1970 Aug 22;227(5260):843–845. doi: 10.1038/227843a0. [DOI] [PubMed] [Google Scholar]
- Sefton B. M., Rubin H. Stimulation of glucose transport in cultures of density-inhibited chick embryo cells. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3154–3157. doi: 10.1073/pnas.68.12.3154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Venuta S., Rubin H. Sugar transport in normal and Rous sarcoma virus-transformed chick-embryo fibroblasts. Proc Natl Acad Sci U S A. 1973 Mar;70(3):653–657. doi: 10.1073/pnas.70.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber M. J. Hexose transport in normal and in Rous sarcoma virus-transformed cells. J Biol Chem. 1973 May 10;248(9):2978–2983. [PubMed] [Google Scholar]
- Weber M. J., Rubin H. Uridine transport and RNA synthesis in growing and in density-inhibited animal cells. J Cell Physiol. 1971 Apr;77(2):157–168. doi: 10.1002/jcp.1040770205. [DOI] [PubMed] [Google Scholar]
