Abstract
Examination of labeling patterns of proteins in Chinese hamster cells(line CHO) revealed the presence of a class of protein(s) that is synthesized during G1 phase of the cell cycle. Cells arrested in G1 by isoleucine (Ile) deprivation were prelabeded with [14-C]Ile, induced to traverse G1 by addition of unlabeled Ile, and labeled with [3-H]Ile at hourly intervals. Cells were fractionated into neclear and cytoplasmic portions, and proteins were separated by sodium dodecyl sulfate- polyacrylamide get electrophoresis. Gel profiles of proteins in the 45,000-160,000 mol wt range from the cytoplasm of cells in G1 were similar to those from cells arrested in G1 except for the presence of a mojor peak of [1-H]Ile incorporated into a protein(s) of approximately 80,000 mol wt. Peaks of net [3-H]Ile incorporation were not detected in neclear preparations. Cellular fractionation by differential centrifugation showed the peak I protein was located in the soluble supernatant fraction of the cytoplasm. Time-course studies showed that synthesis of this protein began 1-2 h after initiation of G1 traverse; the protein reached maximum levels in 4-6 h and was reduced to undetectable levels by 9 h. A cytoplasmic protein with similar electrophoretic mobility was found in G1 phase of cells synchronized by mitotic selection. This class of proteins is synthesized by cells before entry into S phase and may be involved in initiation of DNA synthesis.
Full Text
The Full Text of this article is available as a PDF (474.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Becker H., Stanners C. P. Control of macromolecular synthesis in proliferating and resting Syrian hamster cells in monolayer culture. 3. Electrophoretic patters of newly synthesized proteins in synchronized proliferating cells and resting cells. J Cell Physiol. 1972 Aug;80(1):51–62. doi: 10.1002/jcp.1040800107. [DOI] [PubMed] [Google Scholar]
- CHANOCK R. M., HAYFLICK L., BARILE M. F. Growth on artificial medium of an agent associated with atypical pneumonia and its identification as a PPLO. Proc Natl Acad Sci U S A. 1962 Jan 15;48:41–49. doi: 10.1073/pnas.48.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Terra N. MACRONUCLEAR DNA SYNTHESIS IN Stentor: REGULATION BY A CYTOPLASMIC INITIATOR. Proc Natl Acad Sci U S A. 1967 Mar;57(3):607–614. doi: 10.1073/pnas.57.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enger M. D., Tobey R. A. Effects of isoleucine deficiency on nucleic acid and protein metabolism in cultured Chinese hamster cells. Continued ribonucleic acid and protein synthesis in the absence of deoxyribonucleic acid synthesis. Biochemistry. 1972 Jan 18;11(2):269–277. doi: 10.1021/bi00752a019. [DOI] [PubMed] [Google Scholar]
- Everhart L. P. Effects of deprivation of two essential amino acids on DNA synthesis in Chinese hamster cells. Exp Cell Res. 1972 Oct;74(2):311–318. doi: 10.1016/0014-4827(72)90382-5. [DOI] [PubMed] [Google Scholar]
- Friedman D. L., Mueller G. C. A nuclear system for DNA replication from synchronized HeLa cells. Biochim Biophys Acta. 1968 Jul 23;161(2):455–468. doi: 10.1016/0005-2787(68)90122-6. [DOI] [PubMed] [Google Scholar]
- House W., Waddell A. Detection of mycoplasma in cell cultures. J Pathol Bacteriol. 1967 Jan;93(1):125–132. doi: 10.1002/path.1700930112. [DOI] [PubMed] [Google Scholar]
- Kolodny G. M., Gross P. R. Changes in patterns of protein synthesis during the mammalian cell cycle. Exp Cell Res. 1969 Jul;56(1):117–121. doi: 10.1016/0014-4827(69)90403-0. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Ley K. D. An accurate slicer of disc acrylamide gels devised by simple modification of a density gradient fractionator. Prep Biochem. 1975;5(1):39–44. doi: 10.1080/00327487508061560. [DOI] [PubMed] [Google Scholar]
- Ley K. D., Murphy M. M. Synchronization of mitochondrial DNA synthesis in Chinese hamster cells (line CHO) deprived of isoleucine. J Cell Biol. 1973 Aug;58(2):340–345. doi: 10.1083/jcb.58.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Penman S. RNA metabolism in the HeLa cell nucleus. J Mol Biol. 1966 May;17(1):117–130. doi: 10.1016/s0022-2836(66)80098-0. [DOI] [PubMed] [Google Scholar]
- Prescott D. M., Goldstein L. Nuclear-cytoplasmic interaction in DNA synthesis. Science. 1967 Jan 27;155(3761):469–470. doi: 10.1126/science.155.3761.469. [DOI] [PubMed] [Google Scholar]
- Schneiderman M. H., Dewey W. C., Highfield D. P. Inhibition of DNA synthesis in synchronized Chinese hamster cells treated in G1 with cycloheximide. Exp Cell Res. 1971 Jul;67(1):147–155. doi: 10.1016/0014-4827(71)90630-6. [DOI] [PubMed] [Google Scholar]
- TERASIMA T., TOLMACH L. J. Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Exp Cell Res. 1963 Apr;30:344–362. doi: 10.1016/0014-4827(63)90306-9. [DOI] [PubMed] [Google Scholar]
- Tobey R. A., Anderson E. C., Petersen D. F. Properties of mitotic cells prepared by mechanically shaking monolayer cultures of Chinese hamster cells. J Cell Physiol. 1967 Aug;70(1):63–68. doi: 10.1002/jcp.1040700109. [DOI] [PubMed] [Google Scholar]
- Tobey R. A., Ley K. D. Isoleucine-mediated regulation of genome repliction in various mammalian cell lines. Cancer Res. 1971 Jan;31(1):46–51. [PubMed] [Google Scholar]
- Tobey R. A., Ley K. D. Regulation of initiation of DNA synthesis in Chinese hamster cells. I. Production of stable, reversible G1-arrested populations in suspension culture. J Cell Biol. 1970 Jul;46(1):151–157. doi: 10.1083/jcb.46.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tobey R. A. Production and characterization of mammalian cells reversibly arrested in G1 by growth in isoleucine-deficient medium. Methods Cell Biol. 1973;6:67–112. doi: 10.1016/s0091-679x(08)60048-5. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]