Abstract
Echinosphaerium nucleofilum exhibits at least three kinds of movement: locomotion by the bending and shortening of its many axopodia, feeding by means of food-cup pseudopodia formed from its cortical cytoplasm, and saltatory motion of cytoplasmic particles, especially in the cortex and axopodia. Since previously presented evidence indicated that the microtubular axoneme is not essential for particle motion, the cytoplasm was investigated for the possible existence of contractile behavior and for the possible presence of linear elements other than microtubules. Cytoplasm can be isolated in physiological media in which rigor, relaxation, and contraction can be induced, as in muscle, by manipulating the concentrations of calcium ions and magnesium-adenosine triphosphate. Contraction is initiated by calcium ions at concentrations above 2.4 times 10-minus 7 M. The rigor-to-relaxation transition occurs at subthreshold calcium concentrations on the addition of 10-minus 3 M ATP. Negatively stained preparations of isolated cytoplasm show two types of filaments: thin filaments identified as cytoplasmic actin by virtue of their binding heavy meromyosin from striated muscle in characteristic arrowhead arrays, and thicker filaments which do not strictly resemble myosin aggregates from muscle or amoeba but could conceivably by myosin aggregated in an unfamiliar form.
Full Text
The Full Text of this article is available as a PDF (2.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berl S., Puszkin S., Nicklas W. J. Actomyosin-like protein in brain. Science. 1973 Feb 2;179(4072):441–446. doi: 10.1126/science.179.4072.441. [DOI] [PubMed] [Google Scholar]
- Cande W. Z., Snyder J., Smith D., Summers K., McIntosh J. R. A functional mitotic spindle prepared from mammalian cells in culture. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1559–1563. doi: 10.1073/pnas.71.4.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang B., Pitelka D. R. The contractile process in the ciliate, Stentor coeruleus. I. The role of microtubules and filaments. J Cell Biol. 1973 Jun;57(3):704–728. doi: 10.1083/jcb.57.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowy J., Small J. V. The organization of myosin and actin in vertebrate smooth muscle. Nature. 1970 Jul 4;227(5253):46–51. doi: 10.1038/227046a0. [DOI] [PubMed] [Google Scholar]
- Moore P. L., Condeelis J. S., Taylor D. L., Allen R. D. A method for the morphological identification of contractile filaments in single cells. Exp Cell Res. 1973 Aug;80(2):493–495. doi: 10.1016/0014-4827(73)90332-7. [DOI] [PubMed] [Google Scholar]
- Nachmias V. T., Huxley H. E. Electron microscope observations on actomyosin and actin preparations from Physarum polycephalum, and on their interaction with heavy meromyosin subfragment I from muscle myosin. J Mol Biol. 1970 May 28;50(1):83–90. doi: 10.1016/0022-2836(70)90105-1. [DOI] [PubMed] [Google Scholar]
- Ochs S. Fast transport of materials in mammalian nerve fibers. Science. 1972 Apr 21;176(4032):252–260. doi: 10.1126/science.176.4032.252. [DOI] [PubMed] [Google Scholar]
- Olmsted J. B., Borisy G. G. Characterization of microtubule assembly in porcine brain extracts by viscometry. Biochemistry. 1973 Oct 9;12(21):4282–4289. doi: 10.1021/bi00745a037. [DOI] [PubMed] [Google Scholar]
- Olmsted J. B., Borisy G. G. Microtubules. Annu Rev Biochem. 1973;42:507–540. doi: 10.1146/annurev.bi.42.070173.002451. [DOI] [PubMed] [Google Scholar]
- Palevitz B. A., Ash J. F., Hepler P. K. Actin in the green alga, Nitella. Proc Natl Acad Sci U S A. 1974 Feb;71(2):363–366. doi: 10.1073/pnas.71.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
- Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor D. L., Condeelis J. S., Moore P. L., Allen R. D. The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm. J Cell Biol. 1973 Nov;59(2 Pt 1):378–394. doi: 10.1083/jcb.59.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G., Hiramoto Y., Marsland D. Studies on the microtubules in heliozoa. 3. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia of Actinosphaerium nucleofilum (Barrett). J Cell Biol. 1966 Apr;29(1):77–95. doi: 10.1083/jcb.29.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watters C. Studies on the motility of the Heliozoa. I. The locomotion of Actinosphaerium eichhorni and Actinophrys sp. J Cell Sci. 1968 Jun;3(2):231–244. doi: 10.1242/jcs.3.2.231. [DOI] [PubMed] [Google Scholar]