Abstract
The projection of knobby protuberances at the cell surface (zeiosis) is a general cellular response to cytochalasin D (CD), resulting from herniation of endoplasm through undefended places of the cortex during cell contractions and displacement of microfilaments induced by CD. Zeiosis is prevented by agents that interfere with the contractile response to CD, such as inhibitors of energy metabolism or cyclic AMP. The developed protrusions, which remain relatively stable in the presence of CD, contain chiefly mono- or subribosomes, and occasionally other organelles normally resident in endoplasm; compact microfilament felt occupies their bases and extends into their proximal stalks. Protein synthesis in the knobs is less than half of that in the polyribosome-containing endoplasm residual in the main body of the cell. Knobs first protrude singly near the margin of the contracting cells and rapidly cluster into small groups in the periphery even at lower temperature. The clusters then migrate centripetally and coalesce into a large aggregate near the apex of the immobilized and retracted cell: this movement is energy- and temperature-dependent. Aggregation is more prominent and stable in cell lines of epithelial derivation than in fibroblastic or other lines in which nuclear extrusion occurs more readily. The latter is regarded as a special manifestation of zeiosis. Macromarkers, such as latex spherules, migrate like the zeiotic knobs on the cell surfaces in the presence of CD. The aggregated knobs, although persistent for days in the presence of CD, are rapidly recessed after withdrawal of the agent as ruffling is resumed and the cells spread. These movements are discussed in terms of current concepts of mobility of the cell membrane.
Full Text
The Full Text of this article is available as a PDF (6.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. 3. Movements of particles on the dorsal surface of the leading lamella. Exp Cell Res. 1970 Oct;62(2):389–398. doi: 10.1016/0014-4827(70)90570-7. [DOI] [PubMed] [Google Scholar]
- Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. II. "RRuffling". Exp Cell Res. 1970 Jun;60(3):437–444. doi: 10.1016/0014-4827(70)90537-9. [DOI] [PubMed] [Google Scholar]
- Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. IV. Electron microscopy of the leading lamella. Exp Cell Res. 1971 Aug;67(2):359–367. doi: 10.1016/0014-4827(71)90420-4. [DOI] [PubMed] [Google Scholar]
- Albrecht-Bühler G. A quantitative difference in the movement of marker particles in the plasma membrane of 3T3 mouse fibroblasts and their polyoma transformants. Exp Cell Res. 1973 Mar 30;78(1):67–70. doi: 10.1016/0014-4827(73)90038-4. [DOI] [PubMed] [Google Scholar]
- Albrecht-Bühler G., Solomon F. Properties of particle movement in the plasma membrane of 3T3 mouse fibroblasts. Exp Cell Res. 1974 Apr;85(2):225–233. doi: 10.1016/0014-4827(74)90121-9. [DOI] [PubMed] [Google Scholar]
- Albrecht-Bühler G., Yarnell M. M. A quantitation of movement of marker particles in the plasma membrane of 3T3 mouse fibroblasts. Experimental methods. Exp Cell Res. 1973 Mar 30;78(1):59–66. doi: 10.1016/0014-4827(73)90037-2. [DOI] [PubMed] [Google Scholar]
- BOSS J. Mitosis in cultures of newt tissues. IV. The cell surface in late anaphase and the movements of ribonucleoprotein. Exp Cell Res. 1955 Feb;8(1):181–187. doi: 10.1016/0014-4827(55)90055-0. [DOI] [PubMed] [Google Scholar]
- Burger M. M., Bombik B. M., Breckenridge B. M., Sheppard J. R. Growth control and cyclic alterations of cyclic AMP in the cell cycle. Nat New Biol. 1972 Oct 11;239(93):161–163. doi: 10.1038/newbio239161a0. [DOI] [PubMed] [Google Scholar]
- Butcher F. R., Perdue J. F. Cytochalasin B: effect on hormone-mediated responses in cultured cells. J Cell Biol. 1973 Mar;56(3):857–861. doi: 10.1083/jcb.56.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COSTERO I., POMERAT C. M. Cultivation of neurons from the adult human cerebral and cerebellar cortes. Am J Anat. 1951 Nov;89(3):405–467. doi: 10.1002/aja.1000890304. [DOI] [PubMed] [Google Scholar]
- Carter S. B. Effects of cytochalasins on mammalian cells. Nature. 1967 Jan 21;213(5073):261–264. doi: 10.1038/213261a0. [DOI] [PubMed] [Google Scholar]
- Comoglio P. M., Filogamo G. Plasma membrane fluidity and surface motility of mouse C-1300 neuroblastoma cells. J Cell Sci. 1973 Sep;13(2):415–420. doi: 10.1242/jcs.13.2.415. [DOI] [PubMed] [Google Scholar]
- Comoglio P. M., Guglielmone R. Two dimensional distribution of concanavalin-A receptor molecules on fibroblast and lymphocyte plasma membranes. FEBS Lett. 1972 Nov 1;27(2):256–258. doi: 10.1016/0014-5793(72)80634-3. [DOI] [PubMed] [Google Scholar]
- Edelman G. M., Yahara I., Wang J. L. Receptor mobility and receptor-cytoplasmic interactions in lymphocytes. Proc Natl Acad Sci U S A. 1973 May;70(5):1442–1446. doi: 10.1073/pnas.70.5.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edidin M., Fambrough D. Fluidity of the surface of cultured muscle fibers. Rapid lateral diffusion of marked surface antigens. J Cell Biol. 1973 Apr;57(1):27–37. doi: 10.1083/jcb.57.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Edidin M., Weiss A. Antigen cap formation in cultured fibroblasts: a reflection of membrane fluidity and of cell motility. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2456–2459. doi: 10.1073/pnas.69.9.2456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Estensen R. D., Hill H. R., Quie P. G., Gogan N., Goldberg N. D. Cyclic GMP and cell movement. Nature. 1973 Oct 26;245(5426):458–460. doi: 10.1038/245458a0. [DOI] [PubMed] [Google Scholar]
- Everhart L. P., Jr, Rubin R. W. Cyclic changes in the cell surface. II. The effect of cytochalasin B on the surface morphology of synchronized Chinese hamster ovary cells. J Cell Biol. 1974 Feb;60(2):442–447. doi: 10.1083/jcb.60.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frye L. D., Edidin M. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci. 1970 Sep;7(2):319–335. doi: 10.1242/jcs.7.2.319. [DOI] [PubMed] [Google Scholar]
- Grinnell F., Milam M., Srere P. A. Cyclic AMP does not affect the rate at which cells attach to a substratum. Nat New Biol. 1973 Jan 17;241(107):82–83. doi: 10.1038/newbio241082a0. [DOI] [PubMed] [Google Scholar]
- Harris A., Dunn G. Centripetal transport of attached particles on both surfaces of moving fibroblasts. Exp Cell Res. 1972 Aug;73(2):519–523. doi: 10.1016/0014-4827(72)90084-5. [DOI] [PubMed] [Google Scholar]
- Hsie A. W., Jones C., Puck T. T. Further changes in differentiation state accompanying the conversion of Chinese hamster cells of fibroblastic form by dibutyryl adenosine cyclic 3':5'-monophosphate and hormones. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1648–1652. doi: 10.1073/pnas.68.7.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ingram V. M. A side view of moving fibroblasts. Nature. 1969 May 17;222(5194):641–644. doi: 10.1038/222641a0. [DOI] [PubMed] [Google Scholar]
- Karnovsky M. J., Unanue E. R. Mapping and migration of lymphocyte surface macromolecules. Fed Proc. 1973 Jan;32(1):55–59. [PubMed] [Google Scholar]
- Kletzien R. F., Perdue J. F. The inhibition of sugar transport in chick embryo fibroblasts by cytochalasin B. Evidence for a membrane-specific effect. J Biol Chem. 1973 Jan 25;248(2):711–719. [PubMed] [Google Scholar]
- LANDAU J. V., MCALEAR J. H. The micromorphology of FL and primary human amnion cells following exposure to high hydrostatic pressure. Cancer Res. 1961 Jul;21:812–814. [PubMed] [Google Scholar]
- Loor F., Forni L., Pernis B. The dynamic state of the lymphocyte membrane. Factors affecting the distribution and turnover of surface immunoglobulins. Eur J Immunol. 1972 Jun;2(3):203–212. doi: 10.1002/eji.1830020304. [DOI] [PubMed] [Google Scholar]
- Miranda A. F., Godman G. C., Deitch A. D., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. I. Early events. J Cell Biol. 1974 May;61(2):481–500. doi: 10.1083/jcb.61.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miranda A. F., Godman G. C., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. II. Cortex and microfilaments. J Cell Biol. 1974 Aug;62(2):406–423. doi: 10.1083/jcb.62.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicolson G. L., Painter R. G. Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles. J Cell Biol. 1973 Nov;59(2 Pt 1):395–406. doi: 10.1083/jcb.59.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nicolson G. L. Temperature-dependent mobility of concanavalin A sites on tumour cell surfaces. Nat New Biol. 1973 Jun 13;243(128):218–220. doi: 10.1038/newbio243218a0. [DOI] [PubMed] [Google Scholar]
- Otten J., Johnson G. S., Pastan I. Regulation of cell growth by cyclic adenosine 3',5'-monophosphate. Effect of cell density and agents which alter cell growth on cyclic adenosine 3',5'-monophosphate levels in fibroblasts. J Biol Chem. 1972 Nov 10;247(21):7082–7087. [PubMed] [Google Scholar]
- Paul D. Effects of cyclic AMP on SV3T3 cells in culture. Nat New Biol. 1972 Dec 6;240(101):179–181. doi: 10.1038/newbio240179a0. [DOI] [PubMed] [Google Scholar]
- Penman S., Goldstein E., Reichman M., Singer R. The relation of protein synthesis regulation and RNA metabolism. Acta Endocrinol Suppl (Copenh) 1973;180:168–191. doi: 10.1530/acta.0.074s168. [DOI] [PubMed] [Google Scholar]
- Porter K. R., Puck T. T., Hsie A. W., Kelley D. An electron microscopy study of the effects on dibutyryl cyclic AMP on Chinese hamster ovary cells. Cell. 1974 Jul;2(3):145–162. doi: 10.1016/0092-8674(74)90089-0. [DOI] [PubMed] [Google Scholar]
- Porter K., Prescott D., Frye J. Changes in surface morphology of Chinese hamster ovary cells during the cell cycle. J Cell Biol. 1973 Jun;57(3):815–836. doi: 10.1083/jcb.57.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Price Z. H. A three-dimensional model of membrane ruffling from transmission and scanning electron microscopy of cultured monkey kidney cells (LLCMK 2 ). J Microsc. 1972 Jun;95(3):493–505. doi: 10.1111/j.1365-2818.1972.tb01053.x. [DOI] [PubMed] [Google Scholar]
- Price Z. H. The micromorphology of zeiotic blebs in cultured human epithelial (HEp) cells. Exp Cell Res. 1967 Oct;48(1):82–92. doi: 10.1016/0014-4827(67)90278-9. [DOI] [PubMed] [Google Scholar]
- Puck T. T., Waldren C. A., Hsie A. W. Membrane dynamics in the action of dibutyryl adenosine 3':5'-cyclic monophosphate and testosterone on mammalian cells. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1943–1947. doi: 10.1073/pnas.69.7.1943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reaven E. P., Axline S. G. Subplasmalemmal microfilaments and microtubules in resting and phagocytizing cultivated macrophages. J Cell Biol. 1973 Oct;59(1):12–27. doi: 10.1083/jcb.59.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Revel J. P., Hoch P., Ho D. Adhesion of culture cells to their substratum. Exp Cell Res. 1974 Mar 15;84(1):207–218. doi: 10.1016/0014-4827(74)90398-x. [DOI] [PubMed] [Google Scholar]
- Rose G. G. Cytopathophysiology of tissue cultures growing under cellophane membranes. Int Rev Exp Pathol. 1966;5:111–178. [PubMed] [Google Scholar]
- Rose G. G. Zeiosis. I. Ejection of cell nuclei into zeiotic blebs. J R Microsc Soc. 1966 Dec;86(2):87–102. [PubMed] [Google Scholar]
- Rozengurt E., Pardee A. B. Opposite effects of dibutyryl adenosine 3':5' cyclic monophosphate and serum on growth of Chinese hamster cells. J Cell Physiol. 1972 Oct;80(2):273–279. doi: 10.1002/jcp.1040800215. [DOI] [PubMed] [Google Scholar]
- Rubin R. W., Everhart L. P. The effect of cell-to-cell contact on the surface morphology of Chinese hamster ovary cells. J Cell Biol. 1973 Jun;57(3):837–844. doi: 10.1083/jcb.57.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seifert W., Paul D. Levels of cyclic AMP in sparse and dense cultures of growing and quiescent 3T3 cells. Nat New Biol. 1972 Dec 27;240(104):281–283. doi: 10.1038/newbio240281a0. [DOI] [PubMed] [Google Scholar]
- Sheppard J. R., Prescott D. M. Cyclic AMP levels in synchronized mammalian cells. Exp Cell Res. 1972 Nov;75(1):293–296. doi: 10.1016/0014-4827(72)90554-x. [DOI] [PubMed] [Google Scholar]
- Spooner B. S., Wessells N. K. An analysis of salivary gland morphogenesis: role of cytoplasmic microfilaments and microtubules. Dev Biol. 1972 Jan;27(1):38–54. doi: 10.1016/0012-1606(72)90111-x. [DOI] [PubMed] [Google Scholar]
- Stackpole C. W., Jacobson J. B., Lardis M. P. Two distinct types of capping of surface receptors on mouse lymphoid cells. Nature. 1974 Mar 15;248(445):232–234. doi: 10.1038/248232a0. [DOI] [PubMed] [Google Scholar]
- Sträuli P., Lindenmann R., Haemmerli G. Mikrokinematographische und elektronenmikroskopische Beobachtungen an Zelloberflächen und Zellkontakten der menschlichen Carcinom-Zellkulturlinie HEp 2. Virchows Arch B Cell Pathol. 1971;8(2):143–161. [PubMed] [Google Scholar]
- Sundqvist K. G. Redistribution of surface antigens--a general property of animal cells? Nat New Biol. 1972 Oct 4;239(92):147–149. doi: 10.1038/newbio239147a0. [DOI] [PubMed] [Google Scholar]
- Warner D. A., Perdue J. F. Cytochalasin B and the adenosine triphosphate content of treated fibroblasts. J Cell Biol. 1972 Oct;55(1):242–244. doi: 10.1083/jcb.55.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wessells N. K., Spooner B. S., Ash J. F., Bradley M. O., Luduena M. A., Taylor E. L., Wrenn J. T., Yamada K. Microfilaments in cellular and developmental processes. Science. 1971 Jan 15;171(3967):135–143. doi: 10.1126/science.171.3967.135. [DOI] [PubMed] [Google Scholar]
- ZOLLINGER H. U. Cytologic studies with the phase Microscope; the formation of blisters on cells in suspension, photocytosis, with observations on the nature of the cellular membrane. Am J Pathol. 1948 May;24(3):545–567. [PMC free article] [PubMed] [Google Scholar]