Abstract
Membrane preparations from growing regions of 8-day old Pisum sativum epicotyls contain multiple beta-1,4-glucan (cellulose) synthetase activities (UDP- or GDP-glucose: beta-1,4-glucan-glucosyl transferase), and the levels of some of these are influenced by treatments with the growth hormone, indoleacetic acid (IAA). When membranes from control epicotyl segments (zero time) are fractionated by isopycnic sedimentation in sucrose density gradients, all of the synthetase activities are associated mainly with Golgi membrane (density 1.55 g/cm3). After decapitation and treatment of epicotyls with IAA, synthetases also appear in a smooth vesicle fraction (density 1.11 g/cm3) which is rich in endoplasmic reticulum (ER) marker enzyme. Major fractions of these synthetases are not recovered in association with plasma membrane or washed cell walls. When [14-C]sucrose is supplied in vivo to segments +/- IAA, radioactive cellulose is deposited only in the wall. Cellulose or cellodextrin precursors do not accumulate in those membranes in which synthetase activities are recovered in vitro. In experiments where tissue slices containing intact cells are supplied with [14C]sugar nucleotide in vitro, alkali-insoluble beta-1,4-glucan is synthesized (presumably outside the protoplast) at rates which greatly exceeded (20-30 times) those obtained using isolated membrane preparations. Progressive disruption of cell structure results in increasing losses of this high activity. These results are consistent with the interpretation that Golgi and ER-associated synthetases are not themselves loci for cellulose synthesis in vivo, but represent enzymes in transit to sites of action at the wall:protoplast omterface. There they operate only if integrity of cellular organization is maintained.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdul-Baki A. A., Ray P. M. Regulation by auxin of carbohydrate metabolism involved in cell wall synthesis by pea stem tissue. Plant Physiol. 1971 Apr;47(4):537–544. doi: 10.1104/pp.47.4.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Apelbaum A., Burg S. P. Altered Cell Microfibrillar Orientation in Ethylene-treated Pisum sativum Stems. Plant Physiol. 1971 Nov;48(5):648–652. doi: 10.1104/pp.48.5.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowles D. J., Northcote D. H. The sites of synthesis and transport of extracellular polysaccharides in the root tissues of maize. Biochem J. 1972 Dec;130(4):1133–1145. doi: 10.1042/bj1301133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burg S. P. Ethylene in plant growth. Proc Natl Acad Sci U S A. 1973 Feb;70(2):591–597. doi: 10.1073/pnas.70.2.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dauwalder M., Whaley W. G., Kephart J. E. Phosphatases and differentiation of the Golgi apparatus. J Cell Sci. 1969 Mar;4(2):455–497. doi: 10.1242/jcs.4.2.455. [DOI] [PubMed] [Google Scholar]
- Delmer D. P., Beasley C. A., Ordin L. Utilization of nucleoside diphosphate glucoses in developing cotton fibers. Plant Physiol. 1974 Feb;53(2):149–153. doi: 10.1104/pp.53.2.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fan D. F., Maclachlan G. A. Massive synthesis of ribonucleic Acid and cellulase in the pea epicotyl in response to indoleacetic Acid, with and without concurrent cell division. Plant Physiol. 1967 Aug;42(8):1114–1122. doi: 10.1104/pp.42.8.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hassid W. Z. Biosynthesis of oligosaccharides and polysaccharides in plants. Science. 1969 Jul 11;165(3889):137–144. doi: 10.1126/science.165.3889.137. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu T. Y., Hassid W. Z. Solubilization and partial purification of cellulose synthetase from Phaseolus aureus. J Biol Chem. 1970 Apr 25;245(8):1922–1925. [PubMed] [Google Scholar]
- Lord J. M., Kagawa T., Moore T. S., Beevers H. Endoplasmic reticulum as the site of lecithin formation in castor bean endosperm. J Cell Biol. 1973 Jun;57(3):659–667. doi: 10.1083/jcb.57.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Northcote D. H. Fine structure of cytoplasm in relation to synthesis and secretion in plant cells. Proc R Soc Lond B Biol Sci. 1969 Apr 15;173(1030):21–30. doi: 10.1098/rspb.1969.0033. [DOI] [PubMed] [Google Scholar]
- Northcote D. H. The synthesis and metabolic control of polysaccharides and lignin during the differentiation of plant cells. Essays Biochem. 1969;5:89–137. [PubMed] [Google Scholar]
- PALADE G. E., SIEKEVITZ P. Liver microsomes; an integrated morphological and biochemical study. J Biophys Biochem Cytol. 1956 Mar 25;2(2):171–200. doi: 10.1083/jcb.2.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REESE E. T., SMAKULA E., PERLIN A. S. Enzymic production of cellotriose from cellulose. Arch Biochem Biophys. 1959 Nov;85:171–175. doi: 10.1016/0003-9861(59)90460-6. [DOI] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray P. M., Baker D. B. The Effect of Auxin on Synthesis of Oat Coleoptile Cell Wall Constituents. Plant Physiol. 1965 Mar;40(2):353–360. doi: 10.1104/pp.40.2.353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray P. M. Regulation of beta-Glucan Synthetase Activity by Auxin in Pea Stem Tissue: I. Kinetic Aspects. Plant Physiol. 1973 Apr;51(4):601–608. doi: 10.1104/pp.51.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray P. M. Regulation of beta-Glucan Synthetase Activity by Auxin in Pea Stem Tissue: II. Metabolic Requirements. Plant Physiol. 1973 Apr;51(4):609–614. doi: 10.1104/pp.51.4.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray P. M. Sugar composition of oat-coleoptile cell walls. Biochem J. 1963 Oct;89(1):144–150. doi: 10.1042/bj0890144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roland J. C., Lembi C. A., Morré D. J. Phosphotungstic acid-chromic acid as a selective electron-dense stain for plasma membranes of plant cells. Stain Technol. 1972 Jul;47(4):195–200. doi: 10.3109/10520297209116484. [DOI] [PubMed] [Google Scholar]
- Roland J. C. The relationship between the plasmalemma and plant cell wall. Int Rev Cytol. 1973;36:45–92. doi: 10.1016/s0074-7696(08)60215-6. [DOI] [PubMed] [Google Scholar]
- Ross R., Benditt E. P. Wound healing and collagen formation. V. Quantitative electron microscope radioautographic observations of proline-H3 utilization by fibroblasts. J Cell Biol. 1965 Oct;27(1):83–106. doi: 10.1083/jcb.27.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shore G., Maclachlan G. A. Indoleacetic acid stimulates cellulose deposition and selectively enhances certain beta-glucan synthetase activities. Biochim Biophys Acta. 1973 Dec 5;329(2):271–282. doi: 10.1016/0304-4165(73)90292-4. [DOI] [PubMed] [Google Scholar]
- Spencer F. S., Shore G., Ziola B., Maclachlan G. A. Particulate glucan synthetase activity: generation and inactivation after treatments with indoleacetic acid and cycloheximide. Arch Biochem Biophys. 1972 Sep;152(1):311–317. doi: 10.1016/0003-9861(72)90220-2. [DOI] [PubMed] [Google Scholar]
- Spencer F. S., Ziola B., Maclachlan G. A. Particulate glucan synthetase activity: dependence on acceptor, activator, and plant growth hormone. Can J Biochem. 1971 Dec;49(12):1326–1332. doi: 10.1139/o71-192. [DOI] [PubMed] [Google Scholar]
- TAUSSKY H. H., SHORR E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953 Jun;202(2):675–685. [PubMed] [Google Scholar]
- Tsai C. M., Hassid W. Z. Solubilization and Separation of Uridine Diphospho-d-glucose: beta-(1 --> 4) Glucan and Uridine Diphospho-d-glucose:beta-(1 --> 3) Glucan Glucosyltransferases from Coleoptiles of Avena sativa. Plant Physiol. 1971 Jun;47(6):740–744. doi: 10.1104/pp.47.6.740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wooding F. B. Radioautographic and chemical studies of incorporation into sycamore vascular tissue walls. J Cell Sci. 1968 Mar;3(1):71–80. doi: 10.1242/jcs.3.1.71. [DOI] [PubMed] [Google Scholar]