Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Mar 1;64(3):734–740. doi: 10.1083/jcb.64.3.734

On the connection between the transverse tubules and the plasma membrane in frog semitendinosus skeletal muscle

G Zampighi, J Vergara, F Ramon
PMCID: PMC2109540  PMID: 1080153

Abstract

The transverse tubular system (TTS) of skeletal muscle fibers represents the morphological basis for the inward spread of conduction of the electrical signal that triggers muscle contraction. A historical account of the main steps contributing to the elucidation of the structure and function of the TSS has been presented by Huxley (1971). While the localization of the TSS and its association with the sarcoplasmic reticulum (SR) is well documented; there is still a need further to develop our knowledge of the morphology of the connection between the TSS and the plasma membrane. It is generally believed that the TSS opens directly to the extracellular space and that there is continuity between its membrane and the sarcolemma. However, direct observation of such a connection has been clearly shown only for the myotome of fish (Franzini-Armstrong and Porter, 1964). In other muscle fibers, only indirect evidence of the connection has been provided by experiments showing penetration of extracellular tracers into the TSS. These extracellular markers were also observed inside another membrane-bounded compartment consisting of round profiles named "caveolae" (Yamada, 1955) or "pinocytotic vesicles" (Ashurst, 1969). The present study deals with the communication between the TTS, caveolae, and plasma membrane (Peachey, 1965); Ezerman and Ishikawa, 1967; Schiaffino and Margreth, 1968; and Rayns et al., 1968). A detailed study of the caveolae compartment was undertaken with ruthenium red as an electron-dense tracer. As a result of this study, we propose that in certain species the caveolae compartment represents the transitional region in the connection between the TSS and the sarcolemma.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. FRANZINI-ARMSTRONG C., PORTER K. R. SARCOLEMMAL INVAGINATIONS CONSTITUTING THE T SYSTEM IN FISH MUSCLE FIBERS. J Cell Biol. 1964 Sep;22:675–696. doi: 10.1083/jcb.22.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. HUXLEY A. F., TAYLOR R. E. Local activation of striated muscle fibres. J Physiol. 1958 Dec 30;144(3):426–441. doi: 10.1113/jphysiol.1958.sp006111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hanak H., Böck P. Die Feinstruktur der Muskel-Sehnenverbindung von Skelett- und Herzmuskel. J Ultrastruct Res. 1971 Jul;36(1):68–85. doi: 10.1016/s0022-5320(71)80089-8. [DOI] [PubMed] [Google Scholar]
  4. Hoyle G., McNeill P. A., Walcott B. Nature of invaginating tubules in Felderstruktur muscle fibers of the garter snake. J Cell Biol. 1966 Jul;30(1):197–201. doi: 10.1083/jcb.30.1.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. REVEL J. P. The sarcoplasmic reticulum of the bat cricothroid muscle. J Cell Biol. 1962 Mar;12:571–588. doi: 10.1083/jcb.12.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. ROBERTSON J. D. Some features of the ultrastructure of reptilian skeletal muscle. J Biophys Biochem Cytol. 1956 Jul 25;2(4):369–380. doi: 10.1083/jcb.2.4.369. [DOI] [PubMed] [Google Scholar]
  7. Rayns D. G., Simpson F. O., Bertaud W. S. Surface features of striated muscle. II. Guinea-pig skeletal muscle. J Cell Sci. 1968 Dec;3(4):475–482. doi: 10.1242/jcs.3.4.475. [DOI] [PubMed] [Google Scholar]
  8. Schiaffino S., Margreth A. Coordinated development of the sarcoplasmic reticulum and T system during postnatal differentiation of rat skeletal muscle. J Cell Biol. 1969 Jun;41(3):855–875. doi: 10.1083/jcb.41.3.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. YAMADA E. The fine structure of the gall bladder epithelium of the mouse. J Biophys Biochem Cytol. 1955 Sep 25;1(5):445–458. doi: 10.1083/jcb.1.5.445. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES