Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Mar 1;64(3):586–607. doi: 10.1083/jcb.64.3.586

Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels

PMCID: PMC2109550  PMID: 239003

Abstract

Two heme-peptides (HP) of about 20-A diameter (heme-undecapeptide [H11P], mol wt approximately 1900 and heme-octapeptide [H8P], mol wt approximately 1550), obtained by enzymic hydrolysis of cytochrome c, were sued as probe molecules in muscle capillaries (rat diaphragm). They were localized in situ by a perixidase reaction, enhanced by the addition of imidazole to the incubation medium. Chromatography of plasma samples showed that HPs circulate predominantly as monomers for the duration of the experiments and are bound by aldehyde fixatives to plasma proteins to the extent of approximately 50% (H8P) to approximately 95% (H11P). Both tracers cross the endothelium primarily via plasmalemmal vesicles which become progressively labeled (by reaction product) from the blood front to the tissue front of the endothelium, in three successive resolvable phases. By the end of each phase the extent of labeling reaches greater than 90% of the corresponding vesicle population. Labeled vesicles appear as either isolated units or chains which form patent channels across the endothelium. The patency of these channels was checked by specimen tilting and graphic analysis of their images. No evidence was found for early or preferential marking of the intercellular junctions and spaces by reaction product. It is concluded that the channels are the most likely candidate for structural equivalents of the small pores of the capillary wall since they are continuous, water-filled passages, and are provided with one or more strictures of less than 100 A. Their frequency remains to be established by future work.

Full Text

The Full Text of this article is available as a PDF (6.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babul J., Stellwagen E. The existence of heme-protein coordinate-covalent bonds in denaturing solvents. Biopolymers. 1971 Nov;10(11):2359–2361. doi: 10.1002/bip.360101125. [DOI] [PubMed] [Google Scholar]
  2. Bruns R. R., Palade G. E. Studies on blood capillaries. I. General organization of blood capillaries in muscle. J Cell Biol. 1968 May;37(2):244–276. doi: 10.1083/jcb.37.2.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bruns R. R., Palade G. E. Studies on blood capillaries. II. Transport of ferritin molecules across the wall of muscle capillaries. J Cell Biol. 1968 May;37(2):277–299. doi: 10.1083/jcb.37.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Castro C. E. Theory of hemeprotein reactivity. J Theor Biol. 1971 Dec;33(3):475–490. doi: 10.1016/0022-5193(71)90092-0. [DOI] [PubMed] [Google Scholar]
  5. Claude P., Goodenough D. A. Fracture faces of zonulae occludentes from "tight" and "leaky" epithelia. J Cell Biol. 1973 Aug;58(2):390–400. doi: 10.1083/jcb.58.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clementi F., Palade G. E. Intestinal capillaries. I. Permeability to peroxidase and ferritin. J Cell Biol. 1969 Apr;41(1):33–58. doi: 10.1083/jcb.41.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooper P. F., Wood G. C. Protein-binding of small molecules: new gel filtration method. J Pharm Pharmacol. 1968 Dec;20(Suppl):150S+–150S+. doi: 10.1111/j.2042-7158.1968.tb09877.x. [DOI] [PubMed] [Google Scholar]
  8. Cotran R. S., Karnovsky M. J., Goth A. Resistance of Wistar-Furth rats to the mast cell-damaging effect of horseradish peroxidase. J Histochem Cytochem. 1968 May;16(5):382–383. doi: 10.1177/16.5.382. [DOI] [PubMed] [Google Scholar]
  9. DiBona D. R. Passive intercellular pathway in amphibian epithelia. Nat New Biol. 1972 Aug 9;238(84):179–181. doi: 10.1038/newbio238179a0. [DOI] [PubMed] [Google Scholar]
  10. Diana J. N., Long S. C., Yao H. Effect of histamine on equivalent pore radius in capillaries of isolated dog hindlimb. Microvasc Res. 1972 Oct;4(4):413–437. doi: 10.1016/0026-2862(72)90074-x. [DOI] [PubMed] [Google Scholar]
  11. Dickerson R. E. The structure and history of an ancient protein. Sci Am. 1972 Apr;226(4):58–passim. doi: 10.1038/scientificamerican0472-58. [DOI] [PubMed] [Google Scholar]
  12. Feder N. A heme-peptide as an ultrastructural tracer. J Histochem Cytochem. 1970 Dec;18(12):911–913. doi: 10.1177/18.12.911. [DOI] [PubMed] [Google Scholar]
  13. Feder N. Microperoxidase. An ultrastructural tracer of low molecular weight. J Cell Biol. 1971 Oct;51(1):339–343. doi: 10.1083/jcb.51.1.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Frömter E. The route of passive ion movement through the epithelium of Necturus gallbladder. J Membr Biol. 1972;8(3):259–301. doi: 10.1007/BF01868106. [DOI] [PubMed] [Google Scholar]
  15. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  16. Green H. S., Casley-Smith J. R. Calculations on the passage of small vesicles across endothelial cells by Brownian motion. J Theor Biol. 1972 Apr;35(1):103–111. doi: 10.1016/0022-5193(72)90195-6. [DOI] [PubMed] [Google Scholar]
  17. HARBURY H. A., LOACH P. A. Interaction of nitrogenous ligands with heme peptides from mammalian cytochrome c. J Biol Chem. 1960 Dec;235:3646–3653. [PubMed] [Google Scholar]
  18. HARBURY H. A., LOACH P. A. Oxidation-linked proton functions in heme octa- and undecapeptides from mammalian cytochrome c. J Biol Chem. 1960 Dec;235:3640–3645. [PubMed] [Google Scholar]
  19. Harbury H. A., Cronin J. R., Fanger M. W., Hettinger T. P., Murphy A. J., Myer Y. P., Vinogradov S. N. Complex formation between methionine and a heme peptide from cytochrome c. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1658–1664. doi: 10.1073/pnas.54.6.1658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Harbury H. A., Loach P. A. LINKED FUNCTIONS IN HEME SYSTEMS: OXIDATION-REDUCTION POTENTIALS AND ABSORPTION SPECTRA OF A HEME PEPTIDE OBTAINED UPON PEPTIC HYDROLYSIS OF CYTOCHROME C. Proc Natl Acad Sci U S A. 1959 Sep;45(9):1344–1359. doi: 10.1073/pnas.45.9.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hashimoto P. H. Intracellular channels as a route for protein passage in the capillary endothelium of the shark brain. Am J Anat. 1972 May;134(1):41–57. doi: 10.1002/aja.1001340105. [DOI] [PubMed] [Google Scholar]
  22. Hoard J. L. Stereochemistry of hemes and other metalloporphyrins. Science. 1971 Dec 24;174(4016):1295–1302. doi: 10.1126/science.174.4016.1295. [DOI] [PubMed] [Google Scholar]
  23. KENDREW J. C., BODO G., DINTZIS H. M., PARRISH R. G., WYCKOFF H., PHILLIPS D. C. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature. 1958 Mar 8;181(4610):662–666. doi: 10.1038/181662a0. [DOI] [PubMed] [Google Scholar]
  24. KILLANDER J. SEPARATION OF HUMAN HEME- AND HEMOGLOBIN-BINDING PLASMA PROTEINS, CERULOPLASMIN AND ALBUMIN BY GEL FILTRATION. Biochim Biophys Acta. 1964 Oct 9;93:1–14. doi: 10.1016/0304-4165(64)90254-5. [DOI] [PubMed] [Google Scholar]
  25. Kaminsky L. S., Miller V. J., Davison A. J. Thermodynamic studies of the opening of the heme crevice of ferricytochrome c. Biochemistry. 1973 Jun 5;12(12):2215–2221. doi: 10.1021/bi00736a006. [DOI] [PubMed] [Google Scholar]
  26. Karnovsky M. J., Rice D. F. Exogenous cytochrome c as an ultrastructural tracer. J Histochem Cytochem. 1969 Nov;17(11):751–753. doi: 10.1177/17.11.751. [DOI] [PubMed] [Google Scholar]
  27. Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kobayashi S. Occurrence of unique colloidal particles in snake blood and their transport across the capillary wall. A proposal of a new hypothesis on the permeability of the blood capillaries. Arch Histol Jpn. 1970 Mar;31(5):511–528. doi: 10.1679/aohc1950.31.511. [DOI] [PubMed] [Google Scholar]
  29. Kraehenbuhl J. P., Galardy R. E., Jamieson J. D. Preparation and characterization of an immuno-electron microscope tracer consisting of a heme-octapeptide coupled to fab. J Exp Med. 1974 Jan 1;139(1):208–223. doi: 10.1084/jem.139.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. MAJNO G., PALADE G. E. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol. 1961 Dec;11:571–605. doi: 10.1083/jcb.11.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. MARGOLIASH E., FROHWIRT N., WIENER E. A study of the cytochrome c haemochromogen. Biochem J. 1959 Mar;71(3):559–570. doi: 10.1042/bj0710559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Malone G. H., Prager S., Hutchinson T. E. A simple model for diffusion in independent, temporally fluctuating pores. J Theor Biol. 1972 Aug;36(2):379–395. doi: 10.1016/0022-5193(72)90106-3. [DOI] [PubMed] [Google Scholar]
  33. Margoliash E., Ferguson-Miller S., Tulloss J., Kang C. H., Feinberg B. A., Brautigan D. L., Morrison M. Separate intramolecular pathways for reduction and oxidation of cytochrome c in electron transport chain reactions. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3245–3249. doi: 10.1073/pnas.70.11.3245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Myer Y. P., Harbury H. A. Optical rotatory dispersion of cytochrome c. II. Comparative data for a heme octapeptide. J Biol Chem. 1966 Oct 10;241(19):4299–4303. [PubMed] [Google Scholar]
  35. PAPPENHEIMER J. R. Passage of molecules through capillary wals. Physiol Rev. 1953 Jul;33(3):387–423. doi: 10.1152/physrev.1953.33.3.387. [DOI] [PubMed] [Google Scholar]
  36. PAPPENHEIMER J. R., RENKIN E. M., BORRERO L. M. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol. 1951 Oct;167(1):13–46. doi: 10.1152/ajplegacy.1951.167.1.13. [DOI] [PubMed] [Google Scholar]
  37. Patlak C. S., Rapoport S. I. Theoretical analysis of net tracer flux due to volume circulation in a membrane with pores of different sizes. Relation to solute drag model. J Gen Physiol. 1971 Feb;57(2):113–124. doi: 10.1085/jgp.57.2.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. RENKIN E. M. TRANSPORT OF LARGE MOLECULES ACROSS CAPILLARY WALLS. Physiologist. 1964 Feb;60:13–28. [PubMed] [Google Scholar]
  39. Schejter A., Aviram I. The reaction of cytochrome c with imidazole. Biochemistry. 1969 Jan;8(1):149–153. doi: 10.1021/bi00829a021. [DOI] [PubMed] [Google Scholar]
  40. Schneeberger E. E., Karnovsky M. J. The influence of intravascular fluid volume on the permeability of newborn and adult mouse lungs to ultrastructural protein tracers. J Cell Biol. 1971 May 1;49(2):319–334. doi: 10.1083/jcb.49.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Shea S. M., Bossert W. H. Vesicular transport across endothelium: a generalized diffusion model. Microvasc Res. 1973 Nov;6(3):305–315. doi: 10.1016/0026-2862(73)90079-4. [DOI] [PubMed] [Google Scholar]
  42. Shea S. M., Karnovsky M. J., Bossert W. H. Vesicular transport across endothelium: simulation of a diffusion model. J Theor Biol. 1969 Jul;24(1):30–42. doi: 10.1016/s0022-5193(69)80004-4. [DOI] [PubMed] [Google Scholar]
  43. Simionescu M., Simionescu N., Palade G. E. Morphometric data on the endothelium of blood capillaries. J Cell Biol. 1974 Jan;60(1):128–152. doi: 10.1083/jcb.60.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Simionescu N., Palade G. E. Dextrans and glycogens as particulate tracers for studying capillary permeability. J Cell Biol. 1971 Sep;50(3):616–624. doi: 10.1083/jcb.50.3.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Simionescu N., Simionescu M., Palade G. E. Permeability of muscle capillaries to exogenous myoglobin. J Cell Biol. 1973 May;57(2):424–452. doi: 10.1083/jcb.57.2.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sutin N., Yandell J. K. Mechanisms of the reactions of cytochrome c. Rate and equilibrium constants for ligand binding to horse heart ferricytochrome c. J Biol Chem. 1972 Nov 10;247(21):6932–6936. [PubMed] [Google Scholar]
  47. TSOU C. L. Cytochrome c modified by digestion with proteolytic enzymes. 1. Digestion. Biochem J. 1951 Aug;49(3):362–367. doi: 10.1042/bj0490362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Tormey J. M., Diamond J. M. The ultrastructural route of fluid transport in rabbit gall bladder. J Gen Physiol. 1967 Sep;50(8):2031–2060. doi: 10.1085/jgp.50.8.2031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tu A. T., Reinosa J. A., Hsiao Y. Y. Peroxidative activity of hemepeptides from horse heart cytochrome c. Experientia. 1968 Mar 15;24(3):219–221. doi: 10.1007/BF02152778. [DOI] [PubMed] [Google Scholar]
  50. Wade J. B., Discala V. A. The effect of osmotic flow on the distribution of horseradish peroxidase within the intercellular spaces of toad bladder epithelium. J Cell Biol. 1971 Nov;51(21):553–558. doi: 10.1083/jcb.51.2.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Wade J. B., Revel J. P., DiScala V. A. Effect of osmotic gradients on intercellular junctions of the toad bladder. Am J Physiol. 1973 Feb;224(2):407–415. doi: 10.1152/ajplegacy.1973.224.2.407. [DOI] [PubMed] [Google Scholar]
  52. Winfield M. E. Electron transfer within and between haemoprotein molecules. J Mol Biol. 1965 Jul;12(3):600–611. doi: 10.1016/s0022-2836(65)80314-x. [DOI] [PubMed] [Google Scholar]
  53. Wood G. C., Cooper P. F. The application of gel filtration to the study of protein-binding of small molecules. Chromatogr Rev. 1970 Jan;12(1):88–107. doi: 10.1016/0009-5907(70)80014-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES