Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Aug 1;66(2):414–424. doi: 10.1083/jcb.66.2.414

Morphological alterations and ganglioside sialyltransferase activity induced by small fatty acids in HeLa cells

PMCID: PMC2109554  PMID: 1141384

Abstract

Incubation of HeLa cells in the presence of millimolar concentrations of propionate, butyrate, or pentanoate increases the specific activity of CMP-sialic acid:lactosylceramide sialyltransferase 7-20-fold within 24 h. Longer-chain saturated fatty acids or acetate are much less effective, decanoate showing no induction. Unsaturated fatty acid analogs of butyrate and other compounds are ineffective. Only the three most effective compounds also produce characteristic smooth extended cell processes in HeLa cells. Butyrate (5 mM) induces the sialyltransferase after a 4-h lag, producing maximum specific activity by 24 h. The amount of sialyl-lactosylceramide, the glycolipid product of the enzyme, increases during that time 3.5 times more than in control cultures. No other glycosphingolipid enzyme is significantly altered by butyrate exposure. The cellular shape changes occur 2-3 h later than the increase of sialyltransferase activity, and both processes require the continuous presence of inducer and the synthesis of RNA and protein but not the synthesis of DNA or the presence of serum.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basu S., Kaufman B., Roseman S. Enzymatic synthesis of glucocerebroside by a glucosyltransferase from embryonic chicken brain. J Biol Chem. 1973 Feb 25;248(4):1388–1394. [PubMed] [Google Scholar]
  2. Brady R. O., Fishman P. H. Biosynthesis of glycolipids in virus-transformed cells. Biochim Biophys Acta. 1974 Sep 9;355(2):121–148. doi: 10.1016/0304-419x(74)90001-8. [DOI] [PubMed] [Google Scholar]
  3. Carter T. P. Methodology for separation of gangliosides from potential water-soluble precursors. Lipids. 1973 Oct;8(10):537–548. doi: 10.1007/BF02532709. [DOI] [PubMed] [Google Scholar]
  4. Chatterjee S., Sweeley C. C., Velicer L. F. Biosynthesis of proteins, nucleic acids and glycosphingolipids by synchronized KB cells. Biochem Biophys Res Commun. 1973 Sep 18;54(2):585–592. doi: 10.1016/0006-291x(73)91463-0. [DOI] [PubMed] [Google Scholar]
  5. Coleman P. L., Fishman P. H., Brady R. O., Todaro G. J. Altered ganglioside biosynthesis in mouse cell cultures following transformation with chemical carcinogens and x-irradiation. J Biol Chem. 1975 Jan 10;250(1):55–60. [PubMed] [Google Scholar]
  6. Critchley D. R., Macpherson I. Cell density dependent glycolipids in NILz hamster cells, derived malignant and transformed cell lines. Biochim Biophys Acta. 1973 Jan 19;296(1):145–159. doi: 10.1016/0005-2760(73)90054-4. [DOI] [PubMed] [Google Scholar]
  7. Culp L. A., Grimes W. J., Black P. H. Contact-inhibited revertant cell lines isolated from SV40-transformed cells. I. Biologic, virologic, and chemical properties. J Cell Biol. 1971 Sep;50(3):682–690. doi: 10.1083/jcb.50.3.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Den H., Sela B. A., Roseman S., Sachs L. Blocks in ganglioside synthesis in transformed hamster cells and their revertants. J Biol Chem. 1974 Jan 25;249(2):659–661. [PubMed] [Google Scholar]
  10. Dijong I., Mora P. T., Brady R. O. Gas chromatographic determination of gangliosides in mouse cell lines and in virally transformed derivative lines. Biochemistry. 1971 Oct 26;10(22):4039–4044. doi: 10.1021/bi00798a005. [DOI] [PubMed] [Google Scholar]
  11. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  12. Fishman P. H., McFarland V. W., Mora P. T., Brady R. O. Ganglioside biosynthesis in mouse cells: glycosyltransferase activities in normal and virally-transformed lines. Biochem Biophys Res Commun. 1972 Jul 11;48(1):48–57. doi: 10.1016/0006-291x(72)90342-7. [DOI] [PubMed] [Google Scholar]
  13. Fishman P. H., Simmons J. L., Brady R. O., Freese E. Induction of glycolipid biosynthesis by sodium butyrate in HeLa cells. Biochem Biophys Res Commun. 1974 Jul 10;59(1):292–299. doi: 10.1016/s0006-291x(74)80205-6. [DOI] [PubMed] [Google Scholar]
  14. Ginsburg E., Salomon D., Sreevalsan T., Freese E. Growth inhibition and morphological changes caused by lipophilic acids in mammalian cells. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2457–2461. doi: 10.1073/pnas.70.8.2457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hakomori S. I., Saito T., Vogt P. K. Transformation by rous sarcoma virus: effects on cellular glycolipids. Virology. 1971 Jun;44(3):609–621. doi: 10.1016/0042-6822(71)90375-8. [DOI] [PubMed] [Google Scholar]
  16. Hsie A. W., Puck T. T. Morphological transformation of Chinese hamster cells by dibutyryl adenosine cyclic 3':5'-monophosphate and testosterone. Proc Natl Acad Sci U S A. 1971 Feb;68(2):358–361. doi: 10.1073/pnas.68.2.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson G. S., D'armiento M., Carchman R. A. N6-substituted adenines induce cell elongation irrespective of the intracellular cyclic AMP levels. Exp Cell Res. 1974 Mar 30;85(1):47–56. doi: 10.1016/0014-4827(74)90211-0. [DOI] [PubMed] [Google Scholar]
  18. Johnson G. S., Friedman R. M., Pastan I. Restoration of several morphological characteristics of normal fibroblasts in sarcoma cells treated with adenosine-3':5'-cyclic monphosphate and its derivatives. Proc Natl Acad Sci U S A. 1971 Feb;68(2):425–429. doi: 10.1073/pnas.68.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kalckar H. M., Ullrey D., Kijomoto S., Hakomori S. Carbohydrate catabolism and the enhancement of uptake of galactose in hamster cells transformed by polyoma virus. Proc Natl Acad Sci U S A. 1973 Mar;70(3):839–843. doi: 10.1073/pnas.70.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kijimoto S., Hakomori S. Enhanced glycolipid: -galactosyltransferase activity in contact-inhibited hamster cells, and loss of this response in polyoma transformants. Biochem Biophys Res Commun. 1971 Aug 6;44(3):557–563. doi: 10.1016/s0006-291x(71)80119-5. [DOI] [PubMed] [Google Scholar]
  21. Meienhofer J., Atherton E. Structure-activity relationships in the actinomycins. Adv Appl Microbiol. 1973;16:203–300. [PubMed] [Google Scholar]
  22. Mora P. T., Cumar F. A., Brady R. O. A common biochemical change in SV40 and polyoma virus transformed mouse cells coupled to control of cell growth in culture. Virology. 1971 Oct;46(1):60–72. doi: 10.1016/0042-6822(71)90006-7. [DOI] [PubMed] [Google Scholar]
  23. Mora P. T., Fishman P. H., Bassin R. H., Brady R. O., McFarland V. W. Transformation of Swiss 3T3 cells by murine sarcoma virus is followed by decrease in a glycolipid glycosyltransferase. Nat New Biol. 1973 Oct 24;245(147):226–229. doi: 10.1038/newbio245226a0. [DOI] [PubMed] [Google Scholar]
  24. Pollack R. E., Green H., Todaro G. J. Growth control in cultured cells: selection of sublines with increased sensitivity to contact inhibition and decreased tumor-producing ability. Proc Natl Acad Sci U S A. 1968 May;60(1):126–133. doi: 10.1073/pnas.60.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Prasad K. N., Hsie A. W. Morphologic differentiation of mouse neuroblastoma cells induced in vitro by dibutyryl adenosine 3':5'-cyclic monophosphate. Nat New Biol. 1971 Sep 29;233(39):141–142. doi: 10.1038/newbio233141a0. [DOI] [PubMed] [Google Scholar]
  26. Sachs L. An analysis of the mechanism of neoplastic cell transformation by polyoma virus, hydrocarbons, and x-irradiation. Curr Top Dev Biol. 1967;2:129–150. doi: 10.1016/s0070-2153(08)60286-0. [DOI] [PubMed] [Google Scholar]
  27. Seeds N. W., Gilman A. G., Amano T., Nirenberg M. W. Regulation of axon formation by clonal lines of a neural tumor. Proc Natl Acad Sci U S A. 1970 May;66(1):160–167. doi: 10.1073/pnas.66.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. TODARO G. J., GREEN H., GOLDBERG B. D. TRANSFORMATION OF PROPERTIES OF AN ESTABLISHED CELL LINE BY SV40 AND POLYOMA VIRUS. Proc Natl Acad Sci U S A. 1964 Jan;51:66–73. doi: 10.1073/pnas.51.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Venuta S., Rubin H. Sugar transport in normal and Rous sarcoma virus-transformed chick-embryo fibroblasts. Proc Natl Acad Sci U S A. 1973 Mar;70(3):653–657. doi: 10.1073/pnas.70.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wright J. A. Morphology and growth rate changes in Chinese hamster cells cultured in presence of sodium butyrate. Exp Cell Res. 1973 Apr;78(2):456–460. doi: 10.1016/0014-4827(73)90091-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES