Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Aug 1;66(2):333–350. doi: 10.1083/jcb.66.2.333

Distribution of [1,2-3H]cholesterol in mouse brain after injection in the suckling period

PMCID: PMC2109562  PMID: 806602

Abstract

Glutaraldehyde-carbohydrazide polymer (GACH) was used to embed olfactory tracts, trapezoid body, and sciatic nerves of 9-, 10-, and 49- day old mice 2 h, 24 h, and 6 wk (respectively) after the intraperitoneal administration of [1,2-3H]cholesterol. Greater than 94% of radioactive cholesterol was retained in the GACH-infiltrated brain 24 h or more after injection. The fine structural preservation of both central and peripheral nervous tissues was excellent. Quantitative analysis of electron microscope autoradiographs demonstrated that [1,2- 3H]cholesterol is limited to blood vessel walls and lumen within the central nervous system at 2 h and 6 wk postinjection, but neurons and neuropil also contain the labeled cholesterol. The thickest myelin sheaths in the adult mice appear to be uniformly labeled throughout their width. No relationship of the retained [1,2-3H]cholesterol to the node of Ranvier was found in the adult sciatic nerve.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEN GEREN B. The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. Exp Cell Res. 1954 Nov;7(2):558–562. doi: 10.1016/s0014-4827(54)80098-x. [DOI] [PubMed] [Google Scholar]
  2. Banik N. L., Davison A. N. Exchange of sterols between myelin and other membranes of developing rat brain. Biochem J. 1971 May;122(5):751–758. doi: 10.1042/bj1220751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAVISON A. N., WAJDA M. Persistence of cholesterol-4-14C in the central nervous system. Nature. 1959 Jun 6;183(4675):1606–1607. doi: 10.1038/1831606b0. [DOI] [PubMed] [Google Scholar]
  4. Dhopeshwarkar G. A., Subramanian C., Mead J. F. Rapid uptake of (I- 14 C) acetate by the adult rat brain 15 seconds after carotid injection. Biochim Biophys Acta. 1971 Oct 5;248(1):41–47. [PubMed] [Google Scholar]
  5. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  6. Gautheron C., Petit L., Chevallier F. Synthesis of cholesterolinto the central nervous system and its radioautographic localization. Exp Neurol. 1969 Sep;25(1):18–23. doi: 10.1016/0014-4886(69)90068-5. [DOI] [PubMed] [Google Scholar]
  7. Gigg R., Payne S. The reaction of glutaraldehyde with tissue lipids. Chem Phys Lipids. 1969 Sep;3(3):292–295. doi: 10.1016/0009-3084(69)90021-8. [DOI] [PubMed] [Google Scholar]
  8. Heckman C. A., Barrnett R. J. GACH: a water-miscible, lipid-retaining embedding polymer for electron microscopy. J Ultrastruct Res. 1973 Jan;42(1):156–179. doi: 10.1016/s0022-5320(73)80013-9. [DOI] [PubMed] [Google Scholar]
  9. Hedley-Whyte E. T., Darrah H. K., Stendler F., Uzman B. G. The value of cholesterol-1, 2-H3 as a long term tracer for autoradiographic study of the nervous system of mice. Lab Invest. 1968 Nov;19(5):526–529. [PubMed] [Google Scholar]
  10. Hedley-Whyte E. T., Rawlins F. A., Salpeter M. M., Uzman B. G. Distribution of cholesterol-1,2-H3 during maturation of mouse peripheral nerve. Lab Invest. 1969 Dec;21(6):536–547. [PubMed] [Google Scholar]
  11. Jungalwala F. B. Synthesis and turnover of cerebroside sulfate of myelin in adult and developing rat brain. J Lipid Res. 1974 Mar;15(2):114–123. [PubMed] [Google Scholar]
  12. Kabara J. J. Brain cholesterol. XI. A review of biosynthesis in adult mice. J Am Oil Chem Soc. 1965 Dec;42(12):1003–1008. doi: 10.1007/BF02636892. [DOI] [PubMed] [Google Scholar]
  13. Korn E. D. A chromatographic and spectrophotometric study of the products of the reaction of osmium tetroxide with unsaturated lipids. J Cell Biol. 1967 Aug;34(2):627–638. doi: 10.1083/jcb.34.2.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Korn E. D. II. Synthesis of bis(methyl 9,10-dihydroxystearate)osmate from methyl oleate and osmium tetroxide under conditions used for fixation of biological material. Biochim Biophys Acta. 1966 Apr 4;116(2):317–324. doi: 10.1016/0005-2760(66)90014-2. [DOI] [PubMed] [Google Scholar]
  15. Pease D. C., Peterson R. G. Polymerizable glutaraldehyde-urea mixtures as polar, water-containing embedding media. J Ultrastruct Res. 1972 Oct;41(1):133–159. doi: 10.1016/s0022-5320(72)90043-3. [DOI] [PubMed] [Google Scholar]
  16. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ramsey R. B., Jones J. P., Nicholas H. J. The biosynthesis of cholesterol and other sterols by brain tissue. Distribution in subcellular fractions as a function of time after intracerebral injection of (2- 14 C)mevalonic acid into 30-day-old rat brain: a period of transition. J Neurochem. 1972 Apr;19(4):931–936. doi: 10.1111/j.1471-4159.1972.tb01414.x. [DOI] [PubMed] [Google Scholar]
  18. Rawlins F. A. A time-sequence autoradiographic study of the in vivo incorporation of (1,2-3H)cholesterol into peripheral nerve myelin. J Cell Biol. 1973 Jul;58(1):42–53. doi: 10.1083/jcb.58.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rawlins F. A., Smith M. E. Myelin synthesis in vitro: a comparative study of central and peripheral nervous tissue. J Neurochem. 1971 Oct;18(10):1861–1870. doi: 10.1111/j.1471-4159.1971.tb09592.x. [DOI] [PubMed] [Google Scholar]
  20. Rawlins F. A., Villegas G. M., Hedley-Whyte E. T., Uzman B. G. Fine structural localization of cholesterol-1,2- 3 H in degenerating and regenerating mouse sciatic nerve. J Cell Biol. 1972 Mar;52(3):615–625. doi: 10.1083/jcb.52.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SABATINI D. D., BENSCH K., BARRNETT R. J. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol. 1963 Apr;17:19–58. doi: 10.1083/jcb.17.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Salpeter M. M., Szabo M. Sensitivity in electron microscope autoradiography. I. The effect of radiation dose. J Histochem Cytochem. 1972 Jun;20(6):425–434. doi: 10.1177/20.6.425. [DOI] [PubMed] [Google Scholar]
  23. Smith M. E. The metabolism of myelin lipids. Adv Lipid Res. 1967;5:241–278. doi: 10.1016/b978-1-4831-9941-2.50013-3. [DOI] [PubMed] [Google Scholar]
  24. Smith M. E. The turnover of myelin in the adult rat. Biochim Biophys Acta. 1968 Oct 22;164(2):285–293. doi: 10.1016/0005-2760(68)90154-9. [DOI] [PubMed] [Google Scholar]
  25. Spohn M., Davison A. N. Cholesterol metabolism in myelin and other subcellular fractions of rat brain. J Lipid Res. 1972 Sep;13(5):563–570. [PubMed] [Google Scholar]
  26. Stumpf W. E. Subcellular distribution of 3-H-estradiol in rat uterus by quantitative autoradiography--a comparison between 3-H-estradiol and 3-H-norethynodrel. Endocrinology. 1968 Oct;83(4):777–782. doi: 10.1210/endo-83-4-777. [DOI] [PubMed] [Google Scholar]
  27. Sérougne-Gautheron C., Chevallier F. Time course of biosynthetic cholesterol in the adult rat brain. Biochim Biophys Acta. 1973 Aug 23;316(2):244–250. doi: 10.1016/0005-2760(73)90014-3. [DOI] [PubMed] [Google Scholar]
  28. Sérougne C., Chevallier F. Microscopic radioautography of adult rat brain cholesterol. Problem of the blood-brain barrier. Exp Neurol. 1974 Jul;44(1):1–9. doi: 10.1016/0014-4886(74)90040-5. [DOI] [PubMed] [Google Scholar]
  29. Williamson J. R., Van den Bosch H. High resolution autoradiography with stripping film. J Histochem Cytochem. 1971 May;19(5):304–309. doi: 10.1177/19.5.304. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES