Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Aug 1;66(2):351–366. doi: 10.1083/jcb.66.2.351

The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons

PMCID: PMC2109569  PMID: 49355

Abstract

This study of the slow component of axonal transport was aimed at two problems: the specific identification of polypeptides transported into the axon from the cell body, and the identification of structural polypeptides of the axoplasm. The axonal transport paradigm was used to obtain radioactively labeled axonal polypeptides in the rat ventral motor neuron and the cat spinal ganglion sensory neuron. Comparison of the slow component polypeptides from these two sources using sodium dodecyl sulfate (SDS)-polyacrylamide electrophoresis revealed that they are identical. In both cases five polypeptides account for more than 75% of the total radioactivity present in the slow component. Two of these polypeptides have been tentatively identified as tubulin, the microtubule protein, on the basis of their molecular weights. The three remaining polypeptides with molecular weights of 212,000, 160,000, and 68,000 daltons are constitutive, and as such appear to be associated with a single structure which has been tentatively identified as the 10- nm neurofilament. The 212,000-dalton polypeptide was found to comigrate in SDS gels with the heavy chain of chick muscle myosin. The demonstration on SDS gels that the slow component is composed of a small number of polypeptides which have identical molecular weights in neurons from different mammalian species suggests that these polypeptides comprise fundamental structures of vertebrate neurons.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. E., McClure W. O. An improved scintillation cocktail of high-solubilizing power. Anal Biochem. 1973 Jan;51(1):173–179. doi: 10.1016/0003-2697(73)90465-x. [DOI] [PubMed] [Google Scholar]
  2. Bennett G., Di Giamberardino L., Koenig H. L., Droz B. Axonal migration of protein and glycoprotein to nerve endings. II. Radioautographic analysis of the renewal of glycoproteins in nerve endings of chicken ciliary ganglion after intracerebral injection of (3H)fucose and (3H)-glucosamine. Brain Res. 1973 Sep 28;60(1):129–146. doi: 10.1016/0006-8993(73)90853-6. [DOI] [PubMed] [Google Scholar]
  3. Berl S., Puszkin S. Mg2+ -Ca2+ -activated adenosine triphosphatase system isolated from mammalian brain. Biochemistry. 1970 May 12;9(10):2058–2067. doi: 10.1021/bi00812a005. [DOI] [PubMed] [Google Scholar]
  4. Bray J. J., Austin L. Axoplasmic transport of 14C proteins at two rates in chicken sciatic nerve. Brain Res. 1969 Jan;12(1):230–233. doi: 10.1016/0006-8993(69)90069-9. [DOI] [PubMed] [Google Scholar]
  5. Burns R. G., Pollard T. D. A dynein-like protein from brain. FEBS Lett. 1974 Apr 1;40(2):274–280. doi: 10.1016/0014-5793(74)80243-7. [DOI] [PubMed] [Google Scholar]
  6. Chang C. M., Goldman R. D. The localization of actin-like fibers in cultured neuroblastoma cells as revealed by heavy meromyosin binding. J Cell Biol. 1973 Jun;57(3):867–874. doi: 10.1083/jcb.57.3.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cuénod M., Schonbach J. Synaptic proteins and axonal flow in the pigeon visual pathway. J Neurochem. 1971 Jun;18(6):809–816. doi: 10.1111/j.1471-4159.1971.tb12010.x. [DOI] [PubMed] [Google Scholar]
  8. DROZ B., LEBLOND C. P. AXONAL MIGRATION OF PROTEINS IN THE CENTRAL NERVOUS SYSTEM AND PERIPHERAL NERVES AS SHOWN BY RADIOAUTOGRAPHY. J Comp Neurol. 1963 Dec;121:325–346. doi: 10.1002/cne.901210304. [DOI] [PubMed] [Google Scholar]
  9. Davison P. F., Winslow B. The protein subunit of calf brain neurofilament. J Neurobiol. 1974;5(2):119–133. doi: 10.1002/neu.480050204. [DOI] [PubMed] [Google Scholar]
  10. Day W. A., Gilbert D. S. X-ray diffraction pattern of axoplasm. Biochim Biophys Acta. 1972 Dec 28;285(2):503–506. doi: 10.1016/0005-2795(72)90342-x. [DOI] [PubMed] [Google Scholar]
  11. Droz B., Koenig H. L., Biamberardino L. D., Di Giamberardino L. Axonal migration of protein and glycoprotein to nerve endings. I. Radioautographic analysis of the renewal of protein in nerve endings of chicken ciliary ganglion after intracerebral injection of (3H)lysine. Brain Res. 1973 Sep 28;60(1):93–127. doi: 10.1016/0006-8993(73)90852-4. [DOI] [PubMed] [Google Scholar]
  12. Durham A. C. A unified theory of the control of actin and myosin in nonmuscle movements. Cell. 1974 Jul;2(3):123–135. doi: 10.1016/0092-8674(74)90087-7. [DOI] [PubMed] [Google Scholar]
  13. Fernandez H. L., Burton P. R., Samson F. E. Axoplasmic transport in the crayfish nerve cord. The role of fibrillar constituents of neurons. J Cell Biol. 1971 Oct;51(1):176–192. doi: 10.1083/jcb.51.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fernandez H. L., Davison P. F. Axoplasmic transport in the crayfish nerve cord. Proc Natl Acad Sci U S A. 1969 Oct;64(2):512–519. doi: 10.1073/pnas.64.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fine R. E., Bray D. Actin in growing nerve cells. Nat New Biol. 1971 Nov 24;234(47):115–118. doi: 10.1038/newbio234115a0. [DOI] [PubMed] [Google Scholar]
  16. Forman D. S., Ledeen R. W. Axonal transport of gangliosides in the goldfish optic nerve. Science. 1972 Aug 18;177(4049):630–633. doi: 10.1126/science.177.4049.630. [DOI] [PubMed] [Google Scholar]
  17. Forman D. S., McEwen B. S., Grafstein B. Rapid transport of radioactivity in goldfish optic nerve following injections of labeled glucosamine. Brain Res. 1971 Apr 16;28(1):119–130. doi: 10.1016/0006-8993(71)90529-4. [DOI] [PubMed] [Google Scholar]
  18. Friede R. L., Samorajski T. Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat Rec. 1970 Aug;167(4):379–387. doi: 10.1002/ar.1091670402. [DOI] [PubMed] [Google Scholar]
  19. Gaskin F., Kramer S. B., Cantor C. R., Adelstein R., Shelanski M. L. A dynein-like protein associated with neurotubules. FEBS Lett. 1974 Apr 1;40(2):281–286. doi: 10.1016/0014-5793(74)80244-9. [DOI] [PubMed] [Google Scholar]
  20. Gibbons B. H., Gibbons I. R. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol. 1972 Jul;54(1):75–97. doi: 10.1083/jcb.54.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gilbert D. S. Helical structure of Myxicola axoplasm. Nat New Biol. 1972 Jun 14;237(76):195–passim. doi: 10.1038/newbio237195a0. [DOI] [PubMed] [Google Scholar]
  22. HUXLEY H. E. ELECTRON MICROSCOPE STUDIES ON THE STRUCTURE OF NATURAL AND SYNTHETIC PROTEIN FILAMENTS FROM STRIATED MUSCLE. J Mol Biol. 1963 Sep;7:281–308. doi: 10.1016/s0022-2836(63)80008-x. [DOI] [PubMed] [Google Scholar]
  23. Hoy R. R., Bittner G. D., Kennedy D. Regeneration in crustacean motoneurons: evidence for axonal fusion. Science. 1967 Apr 14;156(3772):251–252. doi: 10.1126/science.156.3772.251. [DOI] [PubMed] [Google Scholar]
  24. Huneeus F. C., Davison P. F. Fibrillar proteins from squid axons. I. Neurofilament protein. J Mol Biol. 1970 Sep 28;52(3):415–428. doi: 10.1016/0022-2836(70)90410-9. [DOI] [PubMed] [Google Scholar]
  25. James K. A., Austin L. The binding in vitro of colchicine to axoplasmic proteins from chicken sciatic nerve. Biochem J. 1970 May;117(4):773–777. doi: 10.1042/bj1170773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Karlsson J. O., Sjöstrand J. Synthesis, migration and turnover of protein in retinal ganglion cells. J Neurochem. 1971 May;18(5):749–767. doi: 10.1111/j.1471-4159.1971.tb12005.x. [DOI] [PubMed] [Google Scholar]
  27. Karlsson J. O., Sjöstrand J. Transport of labelled proteins in the optic nerve and tract of the rabbit. Brain Res. 1968 Nov;11(2):431–439. doi: 10.1016/0006-8993(68)90035-8. [DOI] [PubMed] [Google Scholar]
  28. Karlsson J. O., Sjöstrand J. Transport of microtubular protein in axons of retinal ganglion cells. J Neurochem. 1971 Jun;18(6):975–982. doi: 10.1111/j.1471-4159.1971.tb12027.x. [DOI] [PubMed] [Google Scholar]
  29. LAJTHA A., TOTH J. The brain barrier system. III. The efflux of intracerebrally administered amino acids from the brain. J Neurochem. 1962 Mar-Apr;9:199–212. doi: 10.1111/j.1471-4159.1962.tb11861.x. [DOI] [PubMed] [Google Scholar]
  30. Lasek R. J. Axoplasmic transport of labeled proteins in rat ventral motoneurons. Exp Neurol. 1968 May;21(1):41–51. doi: 10.1016/0014-4886(68)90032-0. [DOI] [PubMed] [Google Scholar]
  31. Lasek R. Axoplasmic transport in cat dorsal root ganglion cells: as studied with [3-H]-L-leucine. Brain Res. 1968 Mar;7(3):360–377. doi: 10.1016/0006-8993(68)90003-6. [DOI] [PubMed] [Google Scholar]
  32. Lorand L., Downey J., Gotoh T., Jacobsen A., Tokura S. The transpeptidase system which crosslinks fibrin by gamma-glutamyle-episilon-lysine bonds. Biochem Biophys Res Commun. 1968 Apr 19;31(2):222–230. doi: 10.1016/0006-291x(68)90734-1. [DOI] [PubMed] [Google Scholar]
  33. MIANI N. ANALYSIS OF THE SOMATO-AXONAL MOVEMENT OF PHOSPHOLIPIDS IN THE VAGUS AND HYPOGLOSSAL NERVES. J Neurochem. 1963 Dec;10:859–874. doi: 10.1111/j.1471-4159.1963.tb11913.x. [DOI] [PubMed] [Google Scholar]
  34. Martinez A. J., Friede R. L. Accumulation of axoplasmic organelles in swollen nerve fibers. Brain Res. 1970 Apr 14;19(2):183–198. doi: 10.1016/0006-8993(70)90433-6. [DOI] [PubMed] [Google Scholar]
  35. McEwen B. S., Forman D. S., Grafstein B. Components of fast and slow axonal transport in the goldfish optic nerve. J Neurobiol. 1971;2(4):361–377. doi: 10.1002/neu.480020408. [DOI] [PubMed] [Google Scholar]
  36. McEwen B. S., Grafstein B. Fast and slow components in axonal transport of protein. J Cell Biol. 1968 Sep;38(3):494–508. doi: 10.1083/jcb.38.3.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Metuzals J., Izzard C. S. Spatial patterns of threadlike elements in the axoplasm of the giant nerve fiber of the squid (Loligo pealii L.) as disclosed by differential interference microscopy and by electron microscopy. J Cell Biol. 1969 Dec;43(3):456–479. doi: 10.1083/jcb.43.3.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Metuzals J., Mushynski W. E. Electron microscope and experimental investigations of the neurofilamentous network in Deiters' neurons. Relationship with the cell surface and nuclear pores. J Cell Biol. 1974 Jun;61(3):701–722. doi: 10.1083/jcb.61.3.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Nadelhaft I. Microtubule densities and total numbers in selected axons of the crayfish abdominal nerve cord. J Neurocytol. 1974 Mar;3(1):73–86. doi: 10.1007/BF01111933. [DOI] [PubMed] [Google Scholar]
  40. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  41. Ochs S. Fast transport of materials in mammalian nerve fibers. Science. 1972 Apr 21;176(4032):252–260. doi: 10.1126/science.176.4032.252. [DOI] [PubMed] [Google Scholar]
  42. Peters A., Vaughn J. E. Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves. J Cell Biol. 1967 Jan;32(1):113–119. doi: 10.1083/jcb.32.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Pisano J. J., Finlayson J. S., Peyton M. P. [Cross-link in fibrin polymerized by factor 13: epsilon-(gamma-glutamyl)lysine]. Science. 1968 May 24;160(3830):892–893. doi: 10.1126/science.160.3830.892. [DOI] [PubMed] [Google Scholar]
  44. Puszkin S., Berl S., Puszkin E., Clarke D. D. Actomyosin-like protein isolated from mammalian brain. Science. 1968 Jul 12;161(3837):170–171. doi: 10.1126/science.161.3837.170. [DOI] [PubMed] [Google Scholar]
  45. Puszkin S., Nicklas W. J., Berl S. Actomyosin-like protein in brain: subcellular distribution. J Neurochem. 1972 May;19(5):1319–1333. doi: 10.1111/j.1471-4159.1972.tb01457.x. [DOI] [PubMed] [Google Scholar]
  46. Puszkin S., Nicklas W. J., Berl S. Actomyosin-like protein in brain: subcellular distribution. J Neurochem. 1972 May;19(5):1319–1333. doi: 10.1111/j.1471-4159.1972.tb01457.x. [DOI] [PubMed] [Google Scholar]
  47. Rice R. H., Means G. E. Radioactive labeling of proteins in vitro. J Biol Chem. 1971 Feb 10;246(3):831–832. [PubMed] [Google Scholar]
  48. Samson F. E., Jr Mechanism of axoplasmic transport. J Neurobiol. 1971;2(4):347–360. doi: 10.1002/neu.480020407. [DOI] [PubMed] [Google Scholar]
  49. Schmitt F. O. Fibrous proteins--neuronal organelles. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1092–1101. doi: 10.1073/pnas.60.4.1092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Shelanski M. L., Albert S., DeVries G. H., Norton W. T. Isolation of filaments from brain. Science. 1971 Dec 17;174(4015):1242–1245. doi: 10.1126/science.174.4015.1242. [DOI] [PubMed] [Google Scholar]
  51. Smith R. S. Microtubule and neurofilament densities in amphibian spinal root nerve fibers: relationship to axoplasmic transport. Can J Physiol Pharmacol. 1973 Nov;51(11):798–806. doi: 10.1139/y73-123. [DOI] [PubMed] [Google Scholar]
  52. Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Tanzer M. L. Cross-linking of collagen. Science. 1973 May 11;180(4086):561–566. doi: 10.1126/science.180.4086.561. [DOI] [PubMed] [Google Scholar]
  54. Traub W., Piez K. A. The chemistry and structure of collagen. Adv Protein Chem. 1971;25:243–352. doi: 10.1016/s0065-3233(08)60281-8. [DOI] [PubMed] [Google Scholar]
  55. Weeds A. G., Pope B. Chemical studies on light chains from cardiac and skeletal muscle myosins. Nature. 1971 Nov 12;234(5324):85–88. doi: 10.1038/234085a0. [DOI] [PubMed] [Google Scholar]
  56. Weisenberg R. C., Borisy G. G., Taylor E. W. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry. 1968 Dec;7(12):4466–4479. doi: 10.1021/bi00852a043. [DOI] [PubMed] [Google Scholar]
  57. Weiss P. A., Mayr R. Neuronal organelles in neuroplasmic ("axonal") flow. II. Neurotubules. Acta Neuropathol. 1971;5(Suppl):198–120. [PubMed] [Google Scholar]
  58. Weiss P. A., Mayr R. Organelles in neuroplasmic ("axonal") flow: neurofilaments. Proc Natl Acad Sci U S A. 1971 Apr;68(4):846–850. doi: 10.1073/pnas.68.4.846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Weiss P. A. Neuronal dynamics and axonal flow. V. The semisolid state of the moving axonal column. Proc Natl Acad Sci U S A. 1972 Mar;69(3):620–623. doi: 10.1073/pnas.69.3.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Weiss P. A. Neuronal dynamics and axonal flow: axonal peristalsis. Proc Natl Acad Sci U S A. 1972 May;69(5):1309–1312. doi: 10.1073/pnas.69.5.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Weiss P., Pillai A. Convection and fate of mitochondria in nerve fibers: axonal flow as vehicle. Proc Natl Acad Sci U S A. 1965 Jul;54(1):48–56. doi: 10.1073/pnas.54.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Willard M., Cowan W. M., Vagelos P. R. The polypeptide composition of intra-axonally transported proteins: evidence for four transport velocities. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2183–2187. doi: 10.1073/pnas.71.6.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Yamada K. M., Spooner B. S., Wessells N. K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol. 1971 Jun;49(3):614–635. doi: 10.1083/jcb.49.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Zelená J. Bidirectional movements of mitochondria along axons of an isolated nerve segment. Z Zellforsch Mikrosk Anat. 1968;92(2):186–196. doi: 10.1007/BF00335646. [DOI] [PubMed] [Google Scholar]
  65. Zelená J., Lubińska L., Gutmann E. Accumulation of organelles at the ends of interrupted axons. Z Zellforsch Mikrosk Anat. 1968;91(2):200–219. doi: 10.1007/BF00364311. [DOI] [PubMed] [Google Scholar]
  66. Zenker W., Hohberg E. A-alpha-nerve-fiber: number of neurotubules in the stem fibre and in the terminal branches. J Neurocytol. 1973 Jun;2(2):143–148. doi: 10.1007/BF01474716. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES