Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Oct 1;67(1):38–48. doi: 10.1083/jcb.67.1.38

Interaction of phospholipid vesicles with cultured mammalial cells. I. Characteristics of uptake

PMCID: PMC2109575  PMID: 240860

Abstract

The interaction of monolayer cultures of Chinese hamster V79 cells with artificially generated, unilamellar lipid vesicles (approximately 500 A diameter) was examined. Vesicles prepared from a variety of natural and synthetic radiolabeled phosphatidyl cholines (lecithins) were incubated with V79 cells bathed in a simple balanced salt solution. After incubation, the cells were analyzed for exogenous lipid incorporation. Large quantities (approximately 10(8) molecules/cell/h) of lecithin became cell associated without affecting cell viability. The effects of pH, charged lipids, and the influence of the vesicle lipid phase transition on the uptake process were examined. Glutaraldehyde fixation of cells before vesicle treatment, or incubation in the presence of metabolic inhibitors, failed to reduce the lecithin uptake by more than 25-50%, suggesting that the lipid uptake is largely energy independent. Cells in sparse culture took up about ten times more lipid than dense cultures. Prolonged incubation (greater than 15 h) of sparse cell cultures with lecithin vesicles resulted in significant cell death while no deleterious effect was found in dense cultures, or with 1:1 lecithin/cholesterol vesicles. When vesicle-treated cells were homogenized and fractionated, about 20-30% of the exogenous lipid was found in the plasma membrane fraction, with the remainder being distributed into intracellular fractions. Electron microscope radioautography further demonstrated that most of the internalized lipid was present in the cytoplasm, with little in the nucleus. These results are discussed in terms of possible modification of cell behavior by lipid vesicle treatment.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Batzri S., Korn E. D. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta. 1973 Apr 16;298(4):1015–1019. doi: 10.1016/0005-2736(73)90408-2. [DOI] [PubMed] [Google Scholar]
  2. Brockerhoff H., Yurkowski M. Simplified preparation of L-alpha-glyceryl phosphoryl choline. Can J Biochem. 1965 Oct;43(10):1777–1777. doi: 10.1139/o65-197. [DOI] [PubMed] [Google Scholar]
  3. Cubero Robles E., van den Berg D. Synthesis of lecithins by acylation of O-(sn-glycero-3-phosphoryl) choline with fatty acid anhydrides. Biochim Biophys Acta. 1969 Dec 17;187(4):520–526. doi: 10.1016/0005-2760(69)90049-6. [DOI] [PubMed] [Google Scholar]
  4. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  5. FORD D. K., YERGANIAN G. Observations on the chromosomes of Chinese hamster cells in tissue culture. J Natl Cancer Inst. 1958 Aug;21(2):393–425. [PubMed] [Google Scholar]
  6. Hong K., Hubbell W. L. Preparation and properties of phospholipid bilayers containing rhodopsin. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2617–2621. doi: 10.1073/pnas.69.9.2617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969 Jan;8(1):344–352. doi: 10.1021/bi00829a048. [DOI] [PubMed] [Google Scholar]
  8. Kram R., Tomkins G. M. Pleiotypic control by cyclic AMP: interaction with cyclic GMP and possible role of microtubules. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1659–1663. doi: 10.1073/pnas.70.6.1659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ladbrooke B. D., Chapman D. Thermal analysis of lipids, proteins and biological membranes. A review and summary of some recent studies. Chem Phys Lipids. 1969 Dec;3(4):304–356. doi: 10.1016/0009-3084(69)90040-1. [DOI] [PubMed] [Google Scholar]
  10. Ladbrooke B. D., Williams R. M., Chapman D. Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction. Biochim Biophys Acta. 1968 Apr 29;150(3):333–340. doi: 10.1016/0005-2736(68)90132-6. [DOI] [PubMed] [Google Scholar]
  11. Otten J., Johnson G. S., Pastan I. Regulation of cell growth by cyclic adenosine 3',5'-monophosphate. Effect of cell density and agents which alter cell growth on cyclic adenosine 3',5'-monophosphate levels in fibroblasts. J Biol Chem. 1972 Nov 10;247(21):7082–7087. [PubMed] [Google Scholar]
  12. PANGBORN M. C. A simplified purification of lecithin. J Biol Chem. 1951 Feb;188(2):471–476. [PubMed] [Google Scholar]
  13. Pagano R. E., Huang L. Interaction of phospholipid vesicles with cultured mammalian cells. II. Studies of mechanism. J Cell Biol. 1975 Oct;67(1):49–60. doi: 10.1083/jcb.67.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pagano R. E., Huang L., Wey C. Interaction of phospholipid vesicles with cultured mammalian cells. Nature. 1974 Nov 8;252(5479):166–167. doi: 10.1038/252166a0. [DOI] [PubMed] [Google Scholar]
  15. Papahadjopoulos D., Jacobson K., Nir S., Isac T. Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. Biochim Biophys Acta. 1973 Jul 6;311(3):330–348. doi: 10.1016/0005-2736(73)90314-3. [DOI] [PubMed] [Google Scholar]
  16. Porter K. R., Puck T. T., Hsie A. W., Kelley D. An electron microscopy study of the effects on dibutyryl cyclic AMP on Chinese hamster ovary cells. Cell. 1974 Jul;2(3):145–162. doi: 10.1016/0092-8674(74)90089-0. [DOI] [PubMed] [Google Scholar]
  17. Saito K., Sato K. A simple colorimetric estimation of lipids with sodium dichromate. J Biochem. 1966 Jun;59(6):619–621. doi: 10.1093/oxfordjournals.jbchem.a128351. [DOI] [PubMed] [Google Scholar]
  18. Scott R. E., Furcht L. T., Kersey J. H. Changes in membrane structure associated with cell contact. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3631–3635. doi: 10.1073/pnas.70.12.3631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Selinger Z., Lapidot Y. Synthesis of fatty acid anhydrides by reaction with dicyclohexylcarbodiimide. J Lipid Res. 1966 Jan;7(1):174–175. [PubMed] [Google Scholar]
  20. Spector A. A., Brenneman D. E. Effect of free fatty acid structure on binding to rat liver mitochondria. Biochim Biophys Acta. 1972 Mar 23;260(3):433–438. doi: 10.1016/0005-2760(72)90058-6. [DOI] [PubMed] [Google Scholar]
  21. Spector A. A. Free fatty acid utilization by mammalian cell suspension comparison between individual fatty acids and fatty acid mixtures. Biochim Biophys Acta. 1970 Oct 6;218(1):36–43. doi: 10.1016/0005-2760(70)90090-1. [DOI] [PubMed] [Google Scholar]
  22. Stambrook P. J., Sisken J. E. Induced changes in the rates of uridine- 3 H uptake and incorporation during the G 1 and S periods of synchronized Chinese hamster cells. J Cell Biol. 1972 Mar;52(3):514–525. doi: 10.1083/jcb.52.3.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stein O., Stein Y. Light and electron microscopic radioautography of lipids: techniques and biological applications. Adv Lipid Res. 1971;9:1–72. doi: 10.1016/b978-0-12-024909-1.50008-9. [DOI] [PubMed] [Google Scholar]
  24. Vlodavsky I., Inbar M., Sachs L. Membrane changes and adenosine triphosphate content in normal and malignant transformed cells. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1780–1784. doi: 10.1073/pnas.70.6.1780. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES