Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1975 Oct 1;67(1):61–71. doi: 10.1083/jcb.67.1.61

Transfer of adenine nucleotides between the releasable and nonreleasable compartments of rabbit blood platelets

PMCID: PMC2109589  PMID: 1176536

Abstract

The metabolic pool of adenine nucleotides in platelets can be labeled by incubating platelets for 1 h in vitro with [14C]adenosine or [32P]orthophosphate. When these platelets are treated with thrombin, the adenine nucleotides released are not labeled. Because of this, Holmsen's suggestion of a metabolically inert pool of granule nucleotides has been generally accepted. We have found that upon incubation of labeled rabbit platelets for longer times (up to 6 h) in vitro, or upon reinjection and reharvesting at times up to 66 h, the releasable pool of adenine nucleotides becomes labeled. Because the rates of 32p and 14C incorporation into this releasable pool are similar, it seems likely that these labels enter the granules as ATP. Equilibrium between the metabolic and granule pools is complete by 18 h. When rabbit platelets are labeled in vivo by intravenous injection of [32P]orthophosphate, peak labeling occurs between 60 and 70 h; this corresponds to their maturation time. The platelets probably incorporate 32P during their production in the megakaryocytes. The specific radioactivity of the adenine nucleotides in the releasable (granule) pool of these platelets is the same as the specific radioactivity in the nonreleasable (metabolic) pool. Since inorganic phosphate in platelets (and undoubtedly in the megakaryocytes) exchanges with inorganic phosphate in plasma, and since the radioactivity of the latter decreases rapidly, the adenine nucleotides in the two pools must exchange to maintain the same specific radioactivity. Transfer of adenine nucleotides into storage granules may represent a general phenomenon because it has been observed in the chromaffin cells of the adrenal medulla also.

Full Text

The Full Text of this article is available as a PDF (658.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASTER R. H., JANDL J. H. PLATELET SEQUESTRATION IN MAN. I. METHODS. J Clin Invest. 1964 May;43:843–855. doi: 10.1172/JCI104970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ardlie N. G., Packham M. A., Mustard J. F. Adenosine diphosphate-induced platelet aggregation in suspensions of washed rabbit platelets. Br J Haematol. 1970 Jul;19(1):7–17. doi: 10.1111/j.1365-2141.1970.tb01596.x. [DOI] [PubMed] [Google Scholar]
  3. Baumgartner H., Winkler H., Hörtnagl H. Isolated chromaffin granules maintenance of ATP content during incubation at 31 degrees C. Eur J Pharmacol. 1973 Apr;22(1):102–104. doi: 10.1016/0014-2999(73)90190-8. [DOI] [PubMed] [Google Scholar]
  4. Evatt B. L., Levin J. Measurement of thrombopoiesis in rabbits using 75selenomethionine. J Clin Invest. 1969 Sep;48(9):1615–1626. doi: 10.1172/JCI106127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HOLMSEN H. COLLAGEN-INDUCED RELEASE OF ADENOSINE DIPHOSPHATE FROM BLOOD PLATELETS INCUBATED WITH RADIOACTIVE PHOSPHATE IN VITRO. Scand J Clin Lab Invest. 1965;17:239–246. [PubMed] [Google Scholar]
  6. Hirsh J., Glynn M. F., Mustard J. F. The effect of platelet age on platelet adherence to collagen. J Clin Invest. 1968 Mar;47(3):466–473. doi: 10.1172/JCI105743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Holmsen H., Day H. J., Storm E. Adenine nucleotide metabolism of blood platelets. VI. Subcellular localization of nucleotide pools with different functions in the platelet release reaction. Biochim Biophys Acta. 1969 Aug 20;186(2):254–266. doi: 10.1016/0005-2787(69)90003-3. [DOI] [PubMed] [Google Scholar]
  8. Ireland D. M. Effect of thrombin on the radioactive nucleotides of human washed platelets. Biochem J. 1967 Nov;105(2):857–867. doi: 10.1042/bj1050857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jenkins C. S., Packham M. A., Kinlough-Rathbone R. L., Mustard J. F. Interactions of polylysine with platelets. Blood. 1971 Apr;37(4):395–412. [PubMed] [Google Scholar]
  10. Kalbhen D. A., Koch H. J. Methodische Untersuchungen zur quantitativen Mikrobestimmung von ATP in biologischen Material mit dem Firefly-Enzymsystem. Z Klin Chem Klin Biochem. 1967 Nov;5(6):299–304. [PubMed] [Google Scholar]
  11. Klingenberg M., Buchholz M. On the mechanism of bongkrekate effect on the mitochondrial adenine-nucleotide carrier as studied through the binding of ADP. Eur J Biochem. 1973 Oct 5;38(2):346–358. doi: 10.1111/j.1432-1033.1973.tb03067.x. [DOI] [PubMed] [Google Scholar]
  12. Kotelba-Witkowska B., Holmsen H., Mürer E. H. Storage of human platelets: effects on metabolically active ATP and on the release reaction. Br J Haematol. 1972 Apr;22(4):429–435. doi: 10.1111/j.1365-2141.1972.tb05690.x. [DOI] [PubMed] [Google Scholar]
  13. Paasonen M. K. Blood platelet as a model for action of drugs and bacterial products. Toxicon. 1972 Aug;10(5):479–484. doi: 10.1016/0041-0101(72)90173-0. [DOI] [PubMed] [Google Scholar]
  14. Packham M. A., Ardlie N. G., Mustard J. F. Effect of adenine compounds on platelet aggregation. Am J Physiol. 1969 Oct;217(4):1009–1017. doi: 10.1152/ajplegacy.1969.217.4.1009. [DOI] [PubMed] [Google Scholar]
  15. Reimers H. J., Allen D. J., Feuerstein I. A., Mustard J. F. Transport and storage of serotonin by thrombin-treated platelets. J Cell Biol. 1975 May;65(2):359–372. doi: 10.1083/jcb.65.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reimers H. J., Buchanan M. R., Mustard J. F. Survival of washed rabbit platelets in vivo. Proc Soc Exp Biol Med. 1973 Apr;142(4):1222–1225. doi: 10.3181/00379727-142-37212. [DOI] [PubMed] [Google Scholar]
  17. Reimers H. J., Packham M. A., Kinlough-Rathbone R. L., Mustard J. F. Effect of repeated treatment of rabbit platelets with low concentrations of thrombin on their function, metabolism and survival. Br J Haematol. 1973 Nov;25(5):675–689. doi: 10.1111/j.1365-2141.1973.tb01780.x. [DOI] [PubMed] [Google Scholar]
  18. Sheppard G., Marlow C. G. The simultaneous measurement of 51Cr and 14C by liquid scintillation counting. Int J Appl Radiat Isot. 1971 Feb;22(2):125–127. doi: 10.1016/0020-708x(71)90094-9. [DOI] [PubMed] [Google Scholar]
  19. Steiner M., Baldini M. Subcellular distribution of 51Cr and characterization of its binding sites in human platelets. Blood. 1970 May;35(5):727–739. [PubMed] [Google Scholar]
  20. Stevens P., Robinson R. L., Van Dyke K., Stitzel R. Studies on the synthesis and release of adenosine triphosphate-8- 3 H in the isolated perfused cat adrenal gland. J Pharmacol Exp Ther. 1972 Jun;181(3):463–471. [PubMed] [Google Scholar]
  21. Stillwell W., Winter H. C. The stimulation of diffusion of adenine nucleotides across bimolecular lipid membranes by divalent metal ions. Biochem Biophys Res Commun. 1974 Feb 4;56(3):617–622. doi: 10.1016/0006-291x(74)90649-4. [DOI] [PubMed] [Google Scholar]
  22. Turpie A. G., Chernesky M. A., Larke R. P., Packham M. A., Mustard J. F. Effect of Newcastle disease virus on human or rabbit platelets. Aggregation and loss of constituents. Lab Invest. 1973 May;28(5):575–583. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES