Abstract
The early chick cornea is composed of an acellular collagenous stroma lined with an anterior epithelium and a posterior endothelium. At stage 27-28 of development (5 1/2 days), this stroma swells so that the cornea is 75-120 mum thick. At the same time, fibroblasts that originate from the neural crest begin to invade this stroma. Using Nomarski light microscopy, we have compared the behavior of moving cells in isolated corneas with the migratory activities of the same cells in artificial collagen lattices and on glass. In situ, fibroblasts have cyclindrical bodies from which extend several thick pseudopodia and/or finer filopodia. Movement is accompanied by activity in these cytoplasmic processes. The flat ruffling lamelli-podia that characterize these cells on glass are not seen in situ, but the general mechanism of cell movement seems to be the same as that observed in vitro: either gross contraction or recoil of the cell body (now pear shaped) into the forward cell process, or more subtle "flowing" of cytoplasm into the forward cell process without immediate loss of the trailing cell process. We filmed collisions between cells in situ and in three-dimensional collagen lattices. These fibroblasts show, in their pair-wise collisions, the classical contact inhibition of movement (CIM) exhibited in vitro even though they lack ruffled borders. On glass these cells multi-layer, showing that, while CIM affects cell movement, fibroblasts can use one another as a substratum. Postmitotic cells show CIM in moving away from each other. Interestingly, dividing cells in situ do not exhibit surface blebbing, but do extend filopodia at telophase. The role of CIM in controlling cell movement in vivo and in vitro is stressed in the discussion.
Full Text
The Full Text of this article is available as a PDF (6.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABERCROMBIE M., AMBROSE E. J. Interference microscope studies of cell contacts in tissue culture. Exp Cell Res. 1958 Oct;15(2):332–345. doi: 10.1016/0014-4827(58)90034-x. [DOI] [PubMed] [Google Scholar]
- ABERCROMBIE M., HEAYSMAN J. E. Observations on the social behaviour of cells in tissue culture. I. Speed of movement of chick heart fibroblasts in relation to their mutual contacts. Exp Cell Res. 1953 Sep;5(1):111–131. doi: 10.1016/0014-4827(53)90098-6. [DOI] [PubMed] [Google Scholar]
- ABERCROMBIE M., HEAYSMAN J. E. Observations on the social behaviour of cells in tissue culture. II. Monolayering of fibroblasts. Exp Cell Res. 1954 May;6(2):293–306. doi: 10.1016/0014-4827(54)90176-7. [DOI] [PubMed] [Google Scholar]
- Abercrombie M. Contact inhibition: the phenomenon and its biological implications. Natl Cancer Inst Monogr. 1967 Sep;26:249–277. [PubMed] [Google Scholar]
- Allen R. D., David G. B., Nomarski G. The zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z Wiss Mikrosk. 1969 Nov;69(4):193–221. [PubMed] [Google Scholar]
- Armstrong P. B., Armstrong M. T. Are cells in solid tissues immobile? Mesonephric mesenchyme studied in vitro. Dev Biol. 1973 Dec;35(2):187–209. doi: 10.1016/0012-1606(73)90017-1. [DOI] [PubMed] [Google Scholar]
- Bard J. B., Hay E. D., Meller S. M. Formation of the endothelium of the avian cornea: a study of cell movement in vivo. Dev Biol. 1975 Feb;42(2):334–361. doi: 10.1016/0012-1606(75)90339-5. [DOI] [PubMed] [Google Scholar]
- Carter S. B. Principles of cell motility: the direction of cell movement and cancer invasion. Nature. 1965 Dec 18;208(5016):1183–1187. doi: 10.1038/2081183a0. [DOI] [PubMed] [Google Scholar]
- Dodson J. W., Hay E. D. Secretion of collagenous stroma by isolated epithelium grown in vitro. Exp Cell Res. 1971 Mar;65(1):215–220. doi: 10.1016/s0014-4827(71)80069-1. [DOI] [PubMed] [Google Scholar]
- Dvorak J. A., Stotler W. F. A controlled-environment culture system for high resolution light microscopy. Exp Cell Res. 1971 Sep;68(1):144–148. doi: 10.1016/0014-4827(71)90596-9. [DOI] [PubMed] [Google Scholar]
- Elsdale T., Bard J. Cellular interactions in mass cultures of human diploid fibroblasts. Nature. 1972 Mar 24;236(5343):152–155. doi: 10.1038/236152a0. [DOI] [PubMed] [Google Scholar]
- Elsdale T., Bard J. Cellular interactions in morphogenesis of epithelial mesenchymal systems. J Cell Biol. 1974 Oct;63(1):343–349. doi: 10.1083/jcb.63.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elsdale T., Bard J. Collagen substrata for studies on cell behavior. J Cell Biol. 1972 Sep;54(3):626–637. doi: 10.1083/jcb.54.3.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elsdale T., Foley R. Morphogenetic aspects of multilayering in Petri dish cultures of human fetal lung fibroblasts. J Cell Biol. 1969 Apr;41(1):298–311. doi: 10.1083/jcb.41.1.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GUSTAFSON T., WOLPERT L. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchvme cells in normal and vegetalized larvae. Exp Cell Res. 1961 Jun;24:64–79. doi: 10.1016/0014-4827(61)90248-8. [DOI] [PubMed] [Google Scholar]
- Gustafson T., Wolpert L. Cellular movement and contact in sea urchin morphogenesis. Biol Rev Camb Philos Soc. 1967 Aug;42(3):442–498. doi: 10.1111/j.1469-185x.1967.tb01482.x. [DOI] [PubMed] [Google Scholar]
- Ingram V. M. A side view of moving fibroblasts. Nature. 1969 May 17;222(5194):641–644. doi: 10.1038/222641a0. [DOI] [PubMed] [Google Scholar]
- Izzard C. S. Contractile filopodia and in vivo cell movement in the tunic of the ascidian, Botryllus schlosseri. J Cell Sci. 1974 Aug;15(3):513–535. doi: 10.1242/jcs.15.3.513. [DOI] [PubMed] [Google Scholar]
- Meier S., Hay E. D. Synthesis of sulfated glycosaminoglycans by embryonic corneal epithelium. Dev Biol. 1973 Dec;35(2):318–331. doi: 10.1016/0012-1606(73)90027-4. [DOI] [PubMed] [Google Scholar]
- Nelson G. A., Revel J. P. Scanning electron microscopic study of cell movements in the corneal endothelium of the avian embryo. Dev Biol. 1975 Feb;42(2):315–333. doi: 10.1016/0012-1606(75)90338-3. [DOI] [PubMed] [Google Scholar]
- Toole B. P., Trelstad R. L. Hyaluronate production and removal during corneal development in the chick. Dev Biol. 1971 Sep;26(1):28–35. doi: 10.1016/0012-1606(71)90104-7. [DOI] [PubMed] [Google Scholar]
- Trelstad R. L., Coulombre A. J. Morphogenesis of the collagenous stroma in the chick cornea. J Cell Biol. 1971 Sep;50(3):840–858. doi: 10.1083/jcb.50.3.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trelstad R. L., Hayashi K., Toole B. P. Epithelial collagens and glycosaminoglycans in the embryonic cornea. Macromolecular order and morphogenesis in the basement membrane. J Cell Biol. 1974 Sep;62(3):815–830. doi: 10.1083/jcb.62.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WOOD S., Jr Pathogenesis of metastasis formation observed in vivo in the rabbit ear chamber. AMA Arch Pathol. 1958 Oct;66(4):550–568. [PubMed] [Google Scholar]