Abstract
Heat denaturation profiles of rat thymus DNA, in intact cells, reveal the presence of two main DNA fractions differing in sensitivities to heat. The thermosensitive DNA fraction shows certain properties similar to those of free DNA: its stability to heat is decreased by alcohols and is increased in the presence of the divalent cations Ca2+, Mn2+, or Mg2+ at concentrations of 0.1-1.0 mM. Unlike free DNA, however, this fraction denatures over a wide range of temperature, and is heterogeneous, consisting of at least two subfractions with different melting points. The thermoresistant DNA fraction shows lowered stability to heat in the presence of Ca2+, Mn2+, or Mg2+ and increased stability in the presence of alcohols. It denatures within a relatively narrow range of temperature, consists of at least three subfractions, and, most likely, represents DNA masked by histones. The effect of Ca2+, Mn2+, or Mg2+ in lowering the melting point of the thermoresistant DNA fraction is seen at cation concentrations comparable to those required to maintain gross chromatin structure in cell nuclei or to support superhelical DNA conformation in isolated chromatin (0.5-1.0 mM). It is probable that factors involved in the maintenance of gross chromatin organization in situ and/or related to DNA superhelicity also have a role in modulating DNA-histone interactions, and that DNA-protein interactions as revealed by conventional methods using isolated chromatin may be different from those revealed when gross chromatin morphology remains intact.
Full Text
The Full Text of this article is available as a PDF (737.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarez M. R. Alterations of deoxyribonucleoprotein thermal stability induced by lymphocyte-Ehrlich ascites tumor cell interactions. Exp Cell Res. 1971 Nov;69(1):72–80. doi: 10.1016/0014-4827(71)90312-0. [DOI] [PubMed] [Google Scholar]
- Alvarez M. R. Microfluorometric comparisons of chromatin thermal stability in situ between normal and neoplastic cells. Cancer Res. 1973 Apr;33(4):786–790. [PubMed] [Google Scholar]
- Ansevin A. T., Brown B. W. Specificity in the association of histones with deoxyribonucleic acid. Evidence from derivative thermal denaturation profiles. Biochemistry. 1971 Mar 30;10(7):1133–1142. doi: 10.1021/bi00783a006. [DOI] [PubMed] [Google Scholar]
- Barclay A. B., Eason R. A quantitative study of binding of glycine-arginine rich histone to DNA. Biochim Biophys Acta. 1972 Apr 26;269(1):37–46. doi: 10.1016/0005-2787(72)90071-8. [DOI] [PubMed] [Google Scholar]
- Berezney R., Coffey D. S. Nuclear protein matrix: association with newly synthesized DNA. Science. 1975 Jul 25;189(4199):291–293. doi: 10.1126/science.1145202. [DOI] [PubMed] [Google Scholar]
- Bradley D. F., Wolf M. K. AGGREGATION OF DYES BOUND TO POLYANIONS. Proc Natl Acad Sci U S A. 1959 Jul;45(7):944–952. doi: 10.1073/pnas.45.7.944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brasch K., Setterfield G. Structural organization of chromosomes in interphase nuclei. Exp Cell Res. 1974 Jan;83(1):175–185. doi: 10.1016/0014-4827(74)90701-0. [DOI] [PubMed] [Google Scholar]
- Carlsson S. A., Moore G. P., Ringertz N. R. Nucleo-cytoplasmic protein migration during the activation of chick erythrocyte nuclei in heterokaryons. Exp Cell Res. 1973 Jan;76(1):234–241. doi: 10.1016/0014-4827(73)90441-2. [DOI] [PubMed] [Google Scholar]
- Clark R. J., Felsenfeld G. Structure of chromatin. Nat New Biol. 1971 Jan 27;229(4):101–106. doi: 10.1038/newbio229101a0. [DOI] [PubMed] [Google Scholar]
- Darzynkiewicz Z., Chelmicka-Szorc E., Arnason B. G. Suppressive effect of protease inhibitors on heterokaryons containing chick erythrocyte nuclei. Exp Cell Res. 1974 Aug;87(2):333–345. doi: 10.1016/0014-4827(74)90489-3. [DOI] [PubMed] [Google Scholar]
- Darzynkiewicz Z. Detection of DNA polymerase activity in fixed cells. Exp Cell Res. 1973 Aug;80(2):483–486. doi: 10.1016/0014-4827(73)90329-7. [DOI] [PubMed] [Google Scholar]
- Darzynkiewicz Z., Traganos F., Sharpless T., Melamed M. R. Thermal denaturation of DNA in situ as studied by acridine orange staining and automated cytofluorometry. Exp Cell Res. 1975 Feb;90(2):411–428. doi: 10.1016/0014-4827(75)90331-6. [DOI] [PubMed] [Google Scholar]
- Darzynkiewicz Z., Traganos F., Sharpless T., Melamed M. Thermally-induced changes in chromatin of isolated nuclei and of intact cells as revealed by acridine orange staining. Biochem Biophys Res Commun. 1974 Jul 10;59(1):392–399. doi: 10.1016/s0006-291x(74)80219-6. [DOI] [PubMed] [Google Scholar]
- EICHHORN G. L. Metal ions as stabilizers or destabilizers of the deoxyriboucleic acid structure. Nature. 1962 May 5;194:474–475. doi: 10.1038/194474a0. [DOI] [PubMed] [Google Scholar]
- GEIDUSCHEK E. P. On the factors controlling the reversibility of DNA denaturation. J Mol Biol. 1962 Jun;4:467–487. doi: 10.1016/s0022-2836(62)80103-x. [DOI] [PubMed] [Google Scholar]
- Garrett R. A. Low angle x-ray diffraction from dilute nucleohistone gels. Biochim Biophys Acta. 1971 Sep 24;246(3):553–560. doi: 10.1016/0005-2787(71)90792-1. [DOI] [PubMed] [Google Scholar]
- Gledhill B. L., Gledhill M. P., Rigler R., Jr, Ringertz N. R. Changes in deoxyribonucleoprotein during spermiogenesis in the bull. Exp Cell Res. 1966 Mar;41(3):652–665. doi: 10.1016/s0014-4827(66)80116-7. [DOI] [PubMed] [Google Scholar]
- Ichimura S., Zama M., Fujita H. Quantitative determination of single-stranded sections in DNA using the fluorescent probe acridine orange. Biochim Biophys Acta. 1971 Jul 29;240(4):485–495. doi: 10.1016/0005-2787(71)90705-2. [DOI] [PubMed] [Google Scholar]
- Itzhaki R. F. Studies on the accessibility of deoxyribonucleic acid in deoxyribonucleoprotein to cationic molecules. Biochem J. 1971 May;122(4):583–592. doi: 10.1042/bj1220583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ivanov V. I., Minchenkova L. E., Schyolkina A. K., Poletayev A. I. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers. 1973;12(1):89–110. doi: 10.1002/bip.1973.360120109. [DOI] [PubMed] [Google Scholar]
- Johnson W. C., Jr, Girod J. C. A novel denaturation of DNA. Biochim Biophys Acta. 1974 Jun 27;353(2):193–199. doi: 10.1016/0005-2787(74)90184-1. [DOI] [PubMed] [Google Scholar]
- Kamentsky L. A. Cytology automation. Adv Biol Med Phys. 1973;14:93–161. doi: 10.1016/b978-0-12-005214-1.50007-8. [DOI] [PubMed] [Google Scholar]
- Kaplan E., Richman H. G. Inductive-like stimulation of RNA and protein synthesis by calcium in heart slices. Biochem Biophys Res Commun. 1974 May 7;58(1):112–118. doi: 10.1016/0006-291x(74)90898-5. [DOI] [PubMed] [Google Scholar]
- LERMAN L. S. The structure of the DNA-acridine complex. Proc Natl Acad Sci U S A. 1963 Jan 15;49:94–102. doi: 10.1073/pnas.49.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEVINE L., GORDON J. A., JENCKS W. P. The relationship of structure to the effectiveness of denaturing agents for deoxyribonucleic acid. Biochemistry. 1963 Jan-Feb;2:168–175. doi: 10.1021/bi00901a030. [DOI] [PubMed] [Google Scholar]
- LYONS J. W., KOTIN L. THE EFFECT OF MAGNESIUM ION ON THE SECONDARY STRUCTURE OF DEOXYRIBONUCLEIC ACID. J Am Chem Soc. 1965 Apr 20;87:1781–1785. doi: 10.1021/ja01086a030. [DOI] [PubMed] [Google Scholar]
- Le Pecq J. B. Use of ethidium bromide for separation and determination of nucleic acids of various conformational forms and measurement of their associated enzymes. Methods Biochem Anal. 1971;20:41–86. doi: 10.1002/9780470110393.ch2. [DOI] [PubMed] [Google Scholar]
- Lezzi M. Differential gene activation in isolated chromosomes. Int Rev Cytol. 1970;29:127–168. doi: 10.1016/s0074-7696(08)60034-0. [DOI] [PubMed] [Google Scholar]
- Li H. J., Bonner J. Interaction of histone half-molecules with deoxyribonucleic acid. Biochemistry. 1971 Apr 13;10(8):1461–1470. doi: 10.1021/bi00784a030. [DOI] [PubMed] [Google Scholar]
- Li H. J., Chang C. Polylysine binding to histone-bound regions in chromatin. Biochem Biophys Res Commun. 1972 May 26;47(4):883–887. doi: 10.1016/0006-291x(72)90575-x. [DOI] [PubMed] [Google Scholar]
- Luckasen J. R., White J. G., Kersey J. H. Mitogenic properties of a calcium ionophore, A23187. Proc Natl Acad Sci U S A. 1974 Dec;71(12):5088–5090. doi: 10.1073/pnas.71.12.5088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NASH D., PLAUT W. ON THE DENATURATION OF CHROMOSOMAL DNA IN SITU. Proc Natl Acad Sci U S A. 1964 May;51:731–735. doi: 10.1073/pnas.51.5.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olins D. E., Olins A. L. Physical studies of isolated eucaryotic nuclei. J Cell Biol. 1972 Jun;53(3):715–736. doi: 10.1083/jcb.53.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ott G. S., Ziegler R., Bauer W. R. The DNA melting transition in aqueous magnesium salt solutions. Biochemistry. 1975 Jul 29;14(15):3431–3438. doi: 10.1021/bi00686a022. [DOI] [PubMed] [Google Scholar]
- Rigler R., Jr Microfluorometric characterization of intracellular nucleic acids and nucleoproteins by acridine orange. Acta Physiol Scand Suppl. 1966;267:1–122. [PubMed] [Google Scholar]
- Rigler R., Killander D. Activation of deoxyribonucleoprotein in human leucocytes stimulated by phytohemagglutinin. II. Structural changes of deoxyribonucleoprotein and synthesis of RNA. Exp Cell Res. 1969 Feb;54(2):171–180. doi: 10.1016/0014-4827(69)90229-8. [DOI] [PubMed] [Google Scholar]
- Rigler R., Killander D., Bolund L., Ringertz N. R. Cytochemical characterization of deoxyribonucleoprotein in individual cell nuclei. Techniques for obtaining heat denaturation curves with the aid of acridine orange microfluorimetry and ultraviolet microspectrophotometry. Exp Cell Res. 1969 May;55(2):215–224. doi: 10.1016/0014-4827(69)90483-2. [DOI] [PubMed] [Google Scholar]
- Ritzén M., Carlsson S. A., Darzynkiewicz Z. Cytochemical evidence of nucleoprotein changes in rat adrenal cortex following hypophysectomy or dexamethasone suppression. Exp Cell Res. 1972 Feb;70(2):462–465. doi: 10.1016/0014-4827(72)90167-x. [DOI] [PubMed] [Google Scholar]
- Shih T. Y., Bonner J. Thermal denaturation and template properties of DNA complexes with purified histone fractions. J Mol Biol. 1970 Mar;48(3):469–487. doi: 10.1016/0022-2836(70)90059-8. [DOI] [PubMed] [Google Scholar]
- Shih T. Y., Lake R. S. Studies on the structure of metaphase and interphase chromatin of Chinese hamster cells by circular dichroism and thermal denaturation. Biochemistry. 1972 Dec 5;11(25):4811–4817. doi: 10.1021/bi00775a026. [DOI] [PubMed] [Google Scholar]
- Traganos F., Darzyndiewicz Z., Sharpless T., Melamed M. R. Denaturation of deoxyribonucleic acid in situ effect of formaldehyde. J Histochem Cytochem. 1975 Jun;23(6):431–438. doi: 10.1177/23.6.239052. [DOI] [PubMed] [Google Scholar]
- Wagner T. E., Vandegrift V. Circular dichrosim studies of calf thymus Ca 2+ nucleohistone IV. Biochemistry. 1972 Apr 11;11(8):1431–1436. doi: 10.1021/bi00758a016. [DOI] [PubMed] [Google Scholar]
- Zelenin A. V., Vinogradova N. G. Influence of partial deproteinization on the cytochemical properties of DNP of lymphocyte nuclei. Exp Cell Res. 1973 Dec;82(2):411–414. doi: 10.1016/0014-4827(73)90359-5. [DOI] [PubMed] [Google Scholar]