Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Jan 1;68(1):11–29. doi: 10.1083/jcb.68.1.11

Characterization of nuclear membranes and endoplasmic reticulum isolated from plant tissue

PMCID: PMC2109619  PMID: 173722

Abstract

Nuclei, nuclear membranes and rough endoplasmic reticulum (rER) were isolated from onion root tips and stems. Structural preservation and purity of the fractions was determined by electron microscopic and biochemical methods. Gross compositional data (protein, phospholipid, nonpolar lipids, sterols, RNA, DNA), phospholipid and fatty acid patterns, enzyme activities (ATPases, ADPase, IDPase, glucose-6- phosphatase, 5'-nucleotidase, acid phosphatase, and NADH- and NADPH- cytochrome C reductases), and cytochrome contents were determined. A stable, high salt-resistant attachment of some DNA with the nuclear membrane was observed as well as the association of some RNA with high salt-treated nuclear and rER membranes. The phospholipid pattern was identical for both nuclear and rER membranes and showed a predominance of lecithin (about 60%) and phosphatidyl ethanolamine (20-24%). Special care was necessary to minimize lipid degradation by phospholipases during isolations. Nonpolar lipids, mostly sterols and triglycerides, accounted for 35-45% of the membrane lipids. Sterol contents were relatively high in both membrane fractions (molar ratios of sterols to phospholipids ranged from 0.12 to 0.43). Sitosterol accounted for about 80% of the total sterols. Palmitic, oleic, and linoleic acids were the most prevalent acids in membrane-bound lipids as well as in storage lipids and occurred in similar proportions in phospholipids, triglycerides and free fatty acids of the membrane. About 80% of the fatty acids in membrane phospholipids and triglycerides were unsaturated. A cytochrome of the b5 type was characterized in these membranes, but P-450-like cytochromes could not be detected. Both NADH and NADPH-cytochrome c reductases were found in nuclear and rER membranes and appeared to be enriched in rER membranes. Among the phosphatases, Mg2+-ATPase and, to lesser extents, ADPase, IDPase and acid phosphatase activities occurred in the fractions, but significant amounts of monovalent ion-stimulated ATPase, 5'-nucleotidase and glucose-6-phosphatase activities did not. The results obtained emphasize that the close biochemical similarities noted between rER and nuclear membranes of animal cells extend to these fractions from plant cells.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABEL L. L., LEVY B. B., BRODIE B. B., KENDALL F. E. A simplified method for the estimation of total cholesterol in serum and demonstration of its specificity. J Biol Chem. 1952 Mar;195(1):357–366. [PubMed] [Google Scholar]
  2. AKAZAWA T., BEEVERS H. Some chemical components of mitochondria and microsomes from germinating castor beans. Biochem J. 1957 Sep;67(1):110–114. doi: 10.1042/bj0670110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abdelkader A. B., Mazliak P. Echanges de lipides entre mitochondries, microsomes et surnageant cytoplasmique de cellules de pomme de terre ou de chou-fleur. Eur J Biochem. 1970 Aug;15(2):250–262. doi: 10.1111/j.1432-1033.1970.tb01002.x. [DOI] [PubMed] [Google Scholar]
  4. Adelman M. R., Blobel G., Sabatini D. D. Nondestructive separation of rat liver rough microsomes into ribosomal and membranous components. Methods Enzymol. 1974;31:201–215. doi: 10.1016/0076-6879(74)31022-1. [DOI] [PubMed] [Google Scholar]
  5. Allen C. F., Good P., Mollenhauer H. H., Totten C. Studies on seeds. IV. Lipid composition of bean cotyledon vesicles. J Cell Biol. 1971 Mar;48(3):542–546. doi: 10.1083/jcb.48.3.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Artman M., Roth J. S. Chromosomal RNA: an artifact of preparation? J Mol Biol. 1971 Sep 14;60(2):291–301. doi: 10.1016/0022-2836(71)90295-6. [DOI] [PubMed] [Google Scholar]
  7. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bartholomew L., Mace K. D. Isolation and identification of phospholipids from root tip cell plasmalemma of Phaseolus limensis. Cytobios. 1972 Jul;5(20):241–247. [PubMed] [Google Scholar]
  9. Brandt R. D., Benveniste P. Isolation and identification of sterols from subcellular fractions of bean leaves (Phaseolus vulgaris). Biochim Biophys Acta. 1972 Sep 1;282(1):85–92. doi: 10.1016/0005-2736(72)90313-6. [DOI] [PubMed] [Google Scholar]
  10. Clark B. R., Rubin R. T., Arthur R. J. A new micro method for determination of cholesterol in serum. Anal Biochem. 1968 Jul;24(1):27–33. doi: 10.1016/0003-2697(68)90056-0. [DOI] [PubMed] [Google Scholar]
  11. Crotty W. J., Ledbetter M. C. Membrane continuities involving chloroplasts and other organelles in plant cells. Science. 1973 Nov 23;182(4114):839–841. doi: 10.1126/science.182.4114.839. [DOI] [PubMed] [Google Scholar]
  12. Dobberstein B., Volkmann D., Klämbt D. The attachment of polyribosomes to membranes of the hypocotyl of Phaseolus vulgaris. Biochim Biophys Acta. 1974 Dec 6;374(2):187–196. doi: 10.1016/0005-2787(74)90362-1. [DOI] [PubMed] [Google Scholar]
  13. Donaldson R. P., Tolbert N. E., Schnarrenberger C. A comparison of microbody membranes with microsomes and mitochondria from plant and animal tissue. Arch Biochem Biophys. 1972 Sep;152(1):199–215. doi: 10.1016/0003-9861(72)90208-1. [DOI] [PubMed] [Google Scholar]
  14. ERNSTER L., LINDBERG O. Determination of organic phosphorus compounds by phosphate analysis. Methods Biochem Anal. 1956;3:1–22. doi: 10.1002/9780470110195.ch1. [DOI] [PubMed] [Google Scholar]
  15. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  16. Franke W. W., Deumling B., Baerbelermen, Jarasch E. D., Kleinig H. Nuclear membranes from mammalian liver. I. Isolation procedure and general characterization. J Cell Biol. 1970 Aug;46(2):379–395. doi: 10.1083/jcb.46.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Franke W. W., Deumling B., Zentgraf H., Falk H., Rae P. M. Nuclear membranes from mammalian liver. IV. Characterization of membrane-attached DNA. Exp Cell Res. 1973 Oct;81(2):365–392. doi: 10.1016/0014-4827(73)90527-2. [DOI] [PubMed] [Google Scholar]
  18. Franke W. W. Isolated nuclear membranes. J Cell Biol. 1966 Dec;31(3):619–623. doi: 10.1083/jcb.31.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Franke W. W., Kartenbeck J. Outer mitochondrial membrane continuous with endoplasmic reticulum. Protoplasma. 1971;73(1):35–41. doi: 10.1007/BF01286409. [DOI] [PubMed] [Google Scholar]
  20. Franke W. W. On the universality of nuclear pore complex structure. Z Zellforsch Mikrosk Anat. 1970;105(3):405–429. doi: 10.1007/BF00335464. [DOI] [PubMed] [Google Scholar]
  21. Franke W. W., Spring H., Scheer U., Zerban H. Growth of the nuclear envelope in the vegetative phase of the green alga Acetabularia. Evidence for assembly from membrane components synthesized in the cytoplasm. J Cell Biol. 1975 Sep;66(3):681–689. doi: 10.1083/jcb.66.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. GERLACH E., DEUTICKE B. EINE EINFACHE METHODE ZUR MIKROBESTIMMUNG VON PHOSPHAT IN DER PAPIERCHROMATOGRAPHIE. Biochem Z. 1963 Jul 26;337:477–479. [PubMed] [Google Scholar]
  23. Goff C. W. Localization of nucleoside diphosphatase in the onion root tip. Protoplasma. 1973;78(4):397–416. doi: 10.1007/BF01275775. [DOI] [PubMed] [Google Scholar]
  24. Grunwald C. Sterol distribution in intracellular organelles isolated from tobacco leaves. Plant Physiol. 1970 Jun;45(6):663–666. doi: 10.1104/pp.45.6.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Gurr M. I., Blades J., Appleby R. S., Smith C. G., Robinson M. P., Nichols B. W. Studies on seed-oil triglycerides. Triglyceride biosynthesis and storage in whole seeds and oil bodies of Crambe abyssinica. Eur J Biochem. 1974 Apr 1;43(2):281–290. doi: 10.1111/j.1432-1033.1974.tb03411.x. [DOI] [PubMed] [Google Scholar]
  26. Hodges T. K., Leonard R. T., Bracker C. E., Keenan T. W. Purification of an ion-stimulated adenosine triphosphatase from plant roots: association with plasma membranes. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3307–3311. doi: 10.1073/pnas.69.11.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. JACOBS E. E. Phosphorylation coupled to electron transport initiated by substituted phenylenediamines. Biochem Biophys Res Commun. 1960 Nov;3:536–539. doi: 10.1016/0006-291x(60)90170-4. [DOI] [PubMed] [Google Scholar]
  28. Jarasch E. D., Franke W. W. Is cytochrome oxidase a constituent of nuclear membranes? J Biol Chem. 1974 Nov 25;249(22):7245–7254. [PubMed] [Google Scholar]
  29. Kasinsky H. E., Shichi H., Hackett D. P. Particulate cytochromes of mung bean seedlings. Plant Physiol. 1966 May;41(5):739–748. doi: 10.1104/pp.41.5.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kemp R. J., Mercer E. I. Studies on the sterols and sterol esters of the intracellular organelles of maize shoots. Biochem J. 1968 Nov;110(1):119–125. doi: 10.1042/bj1100119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. LOENING U. E. Changes in microsomal components accompanying cell differentiation of pea-seedling roots. Biochem J. 1961 Nov;81:254–260. doi: 10.1042/bj0810254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  33. LUNDEGARDH H. The respiratory system of wheat roots. Biochim Biophys Acta. 1962 Feb 26;57:352–368. doi: 10.1016/0006-3002(62)91130-7. [DOI] [PubMed] [Google Scholar]
  34. Lance C., Bonner W. D. The respiratory chain components of higher plant mitochondria. Plant Physiol. 1968 May;43(5):756–766. doi: 10.1104/pp.43.5.756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lau E. P., Lygre D. G. Glucose-6-phosphatase activity in a soluble fraction from cotyledon tissue of Brassica nigra. Biochim Biophys Acta. 1973 Jun 6;309(2):318–327. doi: 10.1016/0005-2744(73)90030-2. [DOI] [PubMed] [Google Scholar]
  36. Leonard R. T., Hansen D., Hodges T. K. Membrane-bound Adenosine Triphosphatase Activities of Oat Roots. Plant Physiol. 1973 Apr;51(4):749–754. doi: 10.1104/pp.51.4.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lord J. M., Kagawa T., Moore T. S., Beevers H. Endoplasmic reticulum as the site of lecithin formation in castor bean endosperm. J Cell Biol. 1973 Jun;57(3):659–667. doi: 10.1083/jcb.57.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. MARGOLIASH E., FROHWIRT N. Spectrum of horse-heart cytochrome c. Biochem J. 1959 Mar;71(3):570–572. doi: 10.1042/bj0710570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. MARTIN E. M., MORTON R. K. Cytochrome b3 of microsomes from plant tissues. Nature. 1955 Jul 16;176(4472):113–114. doi: 10.1038/176113a0. [DOI] [PubMed] [Google Scholar]
  40. MARTIN E. M., MORTON R. K. Haem pigments of cytoplasmic particles from nonphotosynthetic plant tissues. Biochem J. 1957 Feb;65(2):404–413. doi: 10.1042/bj0650404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. MARTIN E. M., MORTON R. K. The chemical composition of microsomes and mitochondria from silver beet. Biochem J. 1956 Oct;64(2):221–235. doi: 10.1042/bj0640221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Monneron A., Blobel G., Palade G. E. Fractionation of the nucleus by divalent cations. Isolation of nuclear membranes. J Cell Biol. 1972 Oct;55(1):104–125. doi: 10.1083/jcb.55.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Morré D. J., Merritt W. D., Lembi C. A. Connections between mitochondria and endoplasmic reticulum in rat liver and onion stem. Protoplasma. 1971;73(1):43–49. doi: 10.1007/BF01286410. [DOI] [PubMed] [Google Scholar]
  44. Poincelot R. P. Isolation and lipid composition of spinach chloroplast envelope membranes. Arch Biochem Biophys. 1973 Nov;159(1):134–142. doi: 10.1016/0003-9861(73)90437-2. [DOI] [PubMed] [Google Scholar]
  45. RHO J. H., CHIPCHASE M. I. Incorporation of tritiated cytidine into ribonucleic acid by isolated pea nuclei. J Cell Biol. 1962 Aug;14:183–192. doi: 10.1083/jcb.14.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rouser G., Siakotos A. N., Fleischer S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids. 1966 Jan;1(1):85–86. doi: 10.1007/BF02668129. [DOI] [PubMed] [Google Scholar]
  47. SHICHI H., HACKETT D. P. Studies on the b-type cytochromes from mung bean seedlings. I. Purification of cytochromes b-555 and b-561. J Biol Chem. 1962 Sep;237:2955–2958. [PubMed] [Google Scholar]
  48. Stadler J., Kleinig H. Nuclear membranes from mammalian liver. 3. Fatty acids. Biochim Biophys Acta. 1971 Apr 13;233(2):315–319. doi: 10.1016/0005-2736(71)90329-4. [DOI] [PubMed] [Google Scholar]
  49. Stavy R., Ben-Shaul Y., Galun E. Nuclear envelope isolation in peas. Biochim Biophys Acta. 1973 Oct 11;323(2):167–177. doi: 10.1016/0005-2736(73)90142-9. [DOI] [PubMed] [Google Scholar]
  50. Storey B. T. The Respiratory Chain of Plant Mitochondria. III. Oxidation Rates of the Cytochromes c and b in Mung Bean Mitochondria Reduced With Succinate. Plant Physiol. 1969 Mar;44(3):413–421. doi: 10.1104/pp.44.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tautvydas K. J. Mass isolation of pea nuclei. Plant Physiol. 1971 Apr;47(4):499–503. doi: 10.1104/pp.47.4.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Vanneste W. H. Molecular proportion of the fixed cytochrome components of the respiratory chain of Keilin-Hartree particles and beef heart mitochondria. Biochim Biophys Acta. 1966 Jan 11;113(1):175–178. doi: 10.1016/s0926-6593(66)80132-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES