Abstract
The metaphase spindle of haploid Dictyostelium discoideum (n = 7) is 2 mum long. It consists of some 20 microtubules which seem continuous between the spindle pole bodies and there are about 20 chromosomal microtubules at each end of the spindle. During anaphase the central spindle elongates and the chromosomal microtubules shorten. The spindle length and structure at this stage suggests that lengthening is caused by elongation as well as parallel sliding of the nonchromosomal microtubules. The nuclear envelope remains mostly intact during mitosis, and nuclear separation through medial constriction takes place when the spindle is 6 mum long. Cytokinesis occurs when the spindle is 10 mum long. At that time the kinetochores double in size. During interphase, the spindle pole body separates from the nucleus to a distance of 0.7 mum, and it returns at the onset of the next prophase when it becomes functionally double, thereby starting the formation of a central spindle. When comparing mitosis in the cellular slime molds Polysphondylium violaceum and D. discoideum, several similarities and some differences are apparent.
Full Text
The Full Text of this article is available as a PDF (4.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aist J. R., Williams P. H. Ultrastructure and time course of mitosis in the fungus Fusarium oxysporum. J Cell Biol. 1972 Nov;55(2):368–389. doi: 10.1083/jcb.55.2.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heath I. B. Mitosis in the fungus Thraustotheca clavata. J Cell Biol. 1974 Jan;60(1):204–220. doi: 10.1083/jcb.60.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jokelainen P. T. The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J Ultrastruct Res. 1967 Jul;19(1):19–44. doi: 10.1016/s0022-5320(67)80058-3. [DOI] [PubMed] [Google Scholar]
- Roos U. P. Fine structure of an organelle associated with the nucleus and cytoplasmic microtubules in the cellular slime mould Polysphondylium violaceum. J Cell Sci. 1975 Jul;18(2):315–326. doi: 10.1242/jcs.18.2.315. [DOI] [PubMed] [Google Scholar]
- Roos U. P. Mitosis in the cellular slime mold Polysphondylium violaceum. J Cell Biol. 1975 Feb;64(2):480–491. doi: 10.1083/jcb.64.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]