Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Feb 1;68(2):287–303. doi: 10.1083/jcb.68.2.287

Immunoferritin determination of the distribution of (Na+ + K+) ATPase over the plasma membranes of renal convoluted tubules. I. Distal segment

PMCID: PMC2109625  PMID: 128557

Abstract

The distribution of (Na+ + K+) ATPase over the plasma membranes of distal convoluted tubules from canine kidney has been determined. This enzyme is responsible for the coupled active transport of Na+ and K+ across animal cell membranes. Ultrathin frozen sections were cut from fragments of renal cortex and specifically stained with antibodies, which recognize antigenic sites on the enzyme, and ferritin-conjugated goat antirabbit gamma-globulins. It is demonstrated that (Na+ + K+) ATPase is distributed uniformly and at high concentration over the plasma membranes which form the intercellular spaces of this epithelium. The enzyme is located on the luminal surface of the tubules as well but at a much lower concentration. These results, in combination with those of previous determinations of the cation fluxes across this epithelium, can be used to formulate a complete description of the cation movements through this tissue.

Full Text

The Full Text of this article is available as a PDF (4.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avrameas S. Coupling of enzymes to proteins with glutaraldehyde. Use of the conjugates for the detection of antigens and antibodies. Immunochemistry. 1969 Jan;6(1):43–52. doi: 10.1016/0019-2791(69)90177-3. [DOI] [PubMed] [Google Scholar]
  2. BONTING S. L., CARAVAGGIO L. L. Studies on sodium-potassium-activated adenosinetriphosphatase. V. Correlation of enzyme activity with cation flux in six tissues. Arch Biochem Biophys. 1963 Apr;101:37–46. doi: 10.1016/0003-9861(63)90531-9. [DOI] [PubMed] [Google Scholar]
  3. BULGER R. E. THE SHAPE OF RAT KIDNEY TUBULAR CELLS. Am J Anat. 1965 Jan;116:237–255. doi: 10.1002/aja.1001160112. [DOI] [PubMed] [Google Scholar]
  4. Bader H., Post R. L., Bond G. H. Comparison of sources of a phosphorylated intermediate in transport ATPase. Biochim Biophys Acta. 1968 Jan 3;150(1):41–46. doi: 10.1016/0005-2736(68)90006-0. [DOI] [PubMed] [Google Scholar]
  5. Burg M., Stoner L. Sodium transport in the distal nephron. Fed Proc. 1974 Jan;33(1):31–36. [PubMed] [Google Scholar]
  6. Cardinal J., Lutz M. D., Burg M. B., Orloff J. Lack of relationship of potential difference to fluid absorption in the proximal renal tubule. Kidney Int. 1975 Feb;7(2):94–102. doi: 10.1038/ki.1975.14. [DOI] [PubMed] [Google Scholar]
  7. Clarke S. The size and detergent binding of membrane proteins. J Biol Chem. 1975 Jul 25;250(14):5459–5469. [PubMed] [Google Scholar]
  8. DUNHAM E. T., GLYNN I. M. Adenosinetriphosphatase activity and the active movements of alkali metal ions. J Physiol. 1961 Apr;156:274–293. doi: 10.1113/jphysiol.1961.sp006675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Duarte C. G., Chomety F., Giebisch G. Effect of amiloride, ouabain, and furosemide on distal tubular function in the rat. Am J Physiol. 1971 Aug;221(2):632–640. doi: 10.1152/ajplegacy.1971.221.2.632. [DOI] [PubMed] [Google Scholar]
  10. Dunn M. J. The effects of transport inhibitors on sodium outflux and influx in red blood cells: evidence for exchange diffusion. J Clin Invest. 1970 Oct;49(10):1804–1814. doi: 10.1172/JCI106398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Firth J. A. Problems of specificity in the use of a strontium capture technique for the cytochemical localization of ouabain-sensitive, potassium-dependent phosphatase in mammalian renal tubules. J Histochem Cytochem. 1974 Dec;22(12):1163–1168. doi: 10.1177/22.12.1163. [DOI] [PubMed] [Google Scholar]
  12. Giebisch G. Functional organization of proximal and distal tubular electrolyte transport. Nephron. 1969;6(3):260–281. doi: 10.1159/000179733. [DOI] [PubMed] [Google Scholar]
  13. Giebisch G., Malnic G., Klose R. M., Windhager E. E. Effect of ionic substitutions on distal potential differences in rat kidney. Am J Physiol. 1966 Sep;211(3):560–568. doi: 10.1152/ajplegacy.1966.211.3.560. [DOI] [PubMed] [Google Scholar]
  14. Glynn I. M., Karlish S. J. The sodium pump. Annu Rev Physiol. 1975;37:13–55. doi: 10.1146/annurev.ph.37.030175.000305. [DOI] [PubMed] [Google Scholar]
  15. Hoffman J. F., Kregenow F. M. The characterization of new energy dependent cation transport processes in red blood cells. Ann N Y Acad Sci. 1966 Jul 14;137(2):566–576. doi: 10.1111/j.1749-6632.1966.tb50182.x. [DOI] [PubMed] [Google Scholar]
  16. Hoffman J. F. The Interaction between Tritiated Ouabain and the Na-K Pump in Red Blood Cells. J Gen Physiol. 1969 Jul 1;54(1):343–353. [PMC free article] [PubMed] [Google Scholar]
  17. Hokin L. E., Dahl J. L., Deupree J. D., Dioxon J. F., Hackney J. F., Perdue J. F. Studies on the characterization of the sodium-potassium transport adenosine triphosphatase. X. Purification of the enzyme from the rectal gland of Squalus acanthias. J Biol Chem. 1973 Apr 10;248(7):2593–2605. [PubMed] [Google Scholar]
  18. Hokin L. E. Purification and properties of the (sodium + potassium)-activated adenosinetriphosphatase and reconstitution of sodium transport. Ann N Y Acad Sci. 1974;242(0):12–23. doi: 10.1111/j.1749-6632.1974.tb19075.x. [DOI] [PubMed] [Google Scholar]
  19. Jorgensen P. L., Hansen O., Glynn I. M., Cavieres J. D. Antibodies to pig kidney (Na + +K + )-ATPase inhibit the Na + pump in human red cells provided they have access to the inner surface of the cell membrane. Biochim Biophys Acta. 1973 Feb 16;291(3):795–800. doi: 10.1016/0005-2736(73)90484-7. [DOI] [PubMed] [Google Scholar]
  20. KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
  21. Kyte J. Immunoferritin determination of the distribution of (Na+ + K+) ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment. J Cell Biol. 1976 Feb;68(2):304–318. doi: 10.1083/jcb.68.2.304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kyte J. Properties of the two polypeptides of sodium- and potassium-dependent adenosine triphosphatase. J Biol Chem. 1972 Dec 10;247(23):7642–7649. [PubMed] [Google Scholar]
  23. Kyte J. Purification of the sodium- and potassium-dependent adenosine triphosphatase from canine renal medulla. J Biol Chem. 1971 Jul 10;246(13):4157–4165. [PubMed] [Google Scholar]
  24. Kyte J. Structural studies of sodium and potassium ion-activated adenosine triphosphatase. The relationship between molecular structure and the mechanism of active transport. J Biol Chem. 1975 Sep 25;250(18):7443–7449. [PubMed] [Google Scholar]
  25. Kyte J. The reactions of sodium and potassium ion-activated adenosine triphosphatase with specific antibodies. Implications for the mechanism of active transport. J Biol Chem. 1974 Jun 10;249(11):3652–3660. [PubMed] [Google Scholar]
  26. Kyte J. The titration of the cardiac glycoside binding site of the (Na+ + K+)-adenosine triphosphatase. J Biol Chem. 1972 Dec 10;247(23):7634–7641. [PubMed] [Google Scholar]
  27. MALNIC G., KLOSE R. M., GIEBISCH G. MICROPUNCTURE STUDY OF RENAL POTASSIUM EXCRETION IN THE RAT. Am J Physiol. 1964 Apr;206:674–686. doi: 10.1152/ajplegacy.1964.206.4.674. [DOI] [PubMed] [Google Scholar]
  28. Malnic G., Giebisch G. Some electrical properties of distal tubular epithelium in the rat. Am J Physiol. 1972 Oct;223(4):797–808. doi: 10.1152/ajplegacy.1972.223.4.797. [DOI] [PubMed] [Google Scholar]
  29. Marchesi V. T., Palade G. E. The localization of Mg-Na-K-activated adenosine triphosphatase on red cell ghost membranes. J Cell Biol. 1967 Nov;35(2):385–404. doi: 10.1083/jcb.35.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McLean J. D., Singer S. J. A general method for the specific staining of intracellular antigens with ferritin-antibody conjugates. Proc Natl Acad Sci U S A. 1970 Jan;65(1):122–128. doi: 10.1073/pnas.65.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nicolson G. L., Marchesi V. T., Singer S. J. The localization of spectrin on the inner surface of human red blood cell membranes by ferritin-conjugated antibodies. J Cell Biol. 1971 Oct;51(1):265–272. doi: 10.1083/jcb.51.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nicolson G. L., Painter R. G. Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles. J Cell Biol. 1973 Nov;59(2 Pt 1):395–406. doi: 10.1083/jcb.59.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nicolson G. L., Singer S. J. The distribution and asymmetry of mammalian cell surface saccharides utilizing ferritin-conjugated plant agglutinins as specific saccharide stains. J Cell Biol. 1974 Jan;60(1):236–248. doi: 10.1083/jcb.60.1.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. POST R. L., JOLLY P. C. The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane. Biochim Biophys Acta. 1957 Jul;25(1):118–128. doi: 10.1016/0006-3002(57)90426-2. [DOI] [PubMed] [Google Scholar]
  35. Painter R. G., Tokuyasu K. T., Singer S. J. Immunoferritin localization of intracellular antigens: the use of ultracryotomy to obtain ultrathin sections suitable for direct immunoferritin staining. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1649–1653. doi: 10.1073/pnas.70.6.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Podevin R. A., Boumendil-Podevin E. F. Effects of temperature, medium K+, ouabain and ethacrynic acid on transport of electrolytes and water by separated renal tubules. Biochim Biophys Acta. 1972 Sep 1;282(1):234–249. doi: 10.1016/0005-2736(72)90329-x. [DOI] [PubMed] [Google Scholar]
  37. SEN A. K., POST R. L. STOICHIOMETRY AND LOCALIZATION OF ADENOSINE TRIPHOSPHATE-DEPENDENT SODIUM AND POTASSIUM TRANSPORT IN THE ERYTHROCYTE. J Biol Chem. 1964 Jan;239:345–352. [PubMed] [Google Scholar]
  38. SINGER S. J. Preparation of an electron-dense antibody conjugate. Nature. 1959 May 30;183(4674):1523–1524. doi: 10.1038/1831523a0. [DOI] [PubMed] [Google Scholar]
  39. Schafer J. A., Troutman S. L., Andreoli T. E. Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules. J Gen Physiol. 1974 Nov;64(5):582–607. doi: 10.1085/jgp.64.5.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sullivan W. J. Electrical potential differences across distal renal tubules of Amphiuma. Am J Physiol. 1968 May;214(5):1096–1103. doi: 10.1152/ajplegacy.1968.214.5.1096. [DOI] [PubMed] [Google Scholar]
  41. TORMEY J. M. Fine structure of the ciliary epithelium of the rabbit, with particular reference to "infoldedmembranes," "vesicles," and the effects of Diamox. J Cell Biol. 1963 Jun;17:641–659. doi: 10.1083/jcb.17.3.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tokuyasu K. T. A technique for ultracryotomy of cell suspensions and tissues. J Cell Biol. 1973 May;57(2):551–565. doi: 10.1083/jcb.57.2.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. WHITTAM R. The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. Biochem J. 1962 Jul;84:110–118. doi: 10.1042/bj0840110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Whittam R., Ager M. E. Vectorial aspects of adenosine-triphosphatase activity in erythrocyte membranes. Biochem J. 1964 Nov;93(2):337–348. doi: 10.1042/bj0930337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Whittembury G., Proverbio F. Two modes of Na extrusion in cells from guinea pig kidney cortex slices. Pflugers Arch. 1970;316(1):1–25. doi: 10.1007/BF00587893. [DOI] [PubMed] [Google Scholar]
  46. Wiederholt M., Sullivan W. J., Giebisch G. Potassium and sodium transport across single distal tubules of Amphiuma. J Gen Physiol. 1971 May;57(5):495–525. doi: 10.1085/jgp.57.5.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. de Mello-Aires M., Giebisch G., Malnic G. Kinetics of potassium transport across single distal tubules of rat kidney. J Physiol. 1973 Jul;232(1):47–70. doi: 10.1113/jphysiol.1973.sp010256. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES