Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Feb 1;68(2):389–395. doi: 10.1083/jcb.68.2.389

Glycine-specific synapses in rat spinal cord. Identification by electron microscope autoradiography

PMCID: PMC2109627  PMID: 1245552

Abstract

Glycine, an inhibitory transmitter in spinal cord, is taken up into specific nerve terminals by means of a unique high-affinity uptake system. In this study, [3H]glycine was directly microinjected into rat ventral horn in vivo and electron microscope autoradiography used to localize the label in various anatomic compartments. Quantiative analysis showed that [3H]glycine labeled a high proportion of axosomatic and axodendritic synapses which presumably act to inhibit spinal motor neurons.

Full Text

The Full Text of this article is available as a PDF (1,015.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arregui A., Logan W. J., Bennett J. P., Snyder S. H. Specific glycine--accumulating synaptosomes in the spinal cord of rats. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3485–3489. doi: 10.1073/pnas.69.11.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burke R. E., Fedina L., Lundberg A. Spatial synaptic distribution of recurrent and group Ia inhibitory systems in cat spinal motoneurones. J Physiol. 1971 Apr;214(2):305–326. doi: 10.1113/jphysiol.1971.sp009434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CURTIS D. R., ECCLES J. C. The time courses of excitatory and inhibitory synaptic actions. J Physiol. 1959 Mar 12;145(3):529–546. doi: 10.1113/jphysiol.1959.sp006159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Curtis D. R., Hösli L., Johnston G. A., Johnston I. H. The hyperpolarization of spinal motoneurones by glycine and related amino acids. Exp Brain Res. 1968;5(3):235–258. doi: 10.1007/BF00238666. [DOI] [PubMed] [Google Scholar]
  5. Davidoff R. A., Shank R. P., Graham L. T., Jr, Aprison M. H., Werman R. Association of glycine with spinal interneurones. Nature. 1967 May 13;214(5089):680–681. doi: 10.1038/214680a0. [DOI] [PubMed] [Google Scholar]
  6. Faeder I. R., Salpeter M. M. Glutamate uptake by a stimulated insect nerve muscle preparation. J Cell Biol. 1970 Aug;46(2):300–307. doi: 10.1083/jcb.46.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hökfelt T., Ljungdahl A. Light and electron microscopic autoradiography on spinal cord slices after incubation with labeled glycine. Brain Res. 1971 Sep 10;32(1):189–194. doi: 10.1016/0006-8993(71)90163-6. [DOI] [PubMed] [Google Scholar]
  8. Iversen L. L., Bloom F. E. Studies of the uptake of 3 H-gaba and ( 3 H)glycine in slices and homogenates of rat brain and spinal cord by electron microscopic autoradiography. Brain Res. 1972 Jun 8;41(1):131–143. doi: 10.1016/0006-8993(72)90621-x. [DOI] [PubMed] [Google Scholar]
  9. Jordan C. C., Webster R. A. Release of acetylcholine and 14 C-glycine from the cat spinal cord in vivo. Br J Pharmacol. 1971 Oct;43(2):441P–441P. [PMC free article] [PubMed] [Google Scholar]
  10. Ljungdahl A., Hökfelt T. Autoradiographic uptake patterns of (3H)GABA and (3H)glycine in central nervous tissues with special reference to the cat spinal cord. Brain Res. 1973 Nov 23;62(2):587–595. doi: 10.1016/0006-8993(73)90726-9. [DOI] [PubMed] [Google Scholar]
  11. Matus A. I., Dennison M. E. An autoradiographic study of uptake of exogenous glycine by vertebrate spinal cord splices in vitro. J Neurocytol. 1972 Jul;1(1):27–34. doi: 10.1007/BF01098643. [DOI] [PubMed] [Google Scholar]
  12. Neal M. J., Pickles H. G. Uptake of 14C glycine by spinal cord. Nature. 1969 May 17;222(5194):679–680. doi: 10.1038/222679a0. [DOI] [PubMed] [Google Scholar]
  13. Neal M. J. The uptake of [14C]glycine by slices of mammalian spinal cord. J Physiol. 1971 May;215(1):103–117. doi: 10.1113/jphysiol.1971.sp009460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Orkand P. M., Kravitz E. A. Localization of the sites of gamma-aminobutyric acid (GABA) uptake in lobster nerve-muscle preparations. J Cell Biol. 1971 Apr;49(1):75–89. doi: 10.1083/jcb.49.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Peters T., Jr, Ashley C. A. An artefact in radioautography due to binding of free amino acids to tissues by fixatives. J Cell Biol. 1967 Apr;33(1):53–60. doi: 10.1083/jcb.33.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Snyder S. H., Young A. B., Bennett J. P., Mulder A. H. Synaptic biochemistry of amino acids. Fed Proc. 1973 Oct;32(10):2039–2047. [PubMed] [Google Scholar]
  17. Werman R. Amino acids as central neurotransmitters. Res Publ Assoc Res Nerv Ment Dis. 1972;50:147–180. [PubMed] [Google Scholar]
  18. Werman R., Davidoff R. A., Aprison M. H. Inhibitory of glycine on spinal neurons in the cat. J Neurophysiol. 1968 Jan;31(1):81–95. doi: 10.1152/jn.1968.31.1.81. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES