Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Feb 1;68(2):240–263. doi: 10.1083/jcb.68.2.240

Morphological changes in the neuritic growth cone and target neuron during synaptic junction development in culture

PMCID: PMC2109632  PMID: 173724

Abstract

Our object was to characterize the morphological changes occurring in pre- and postsynaptic elements during their initial contact and subsequent maturation into typical synaptic profiles. Neurons from superior cervical ganglia (SCG) of perinatal rats were freed of their supporting cells and established as isolated cells in culture. To these were added explants of embryonic rat thoracic spinal cord to allow interaction between outgrowing cord neurites and the isolated autonomic neurons. Time of initial contact was assessed by light microscopy; at timed intervals thereafter, cultures were fixed for electron microscopy. Upon contact, growth cone filopodia became extensively applied to the SCG neuronal plasmalemma and manifested numerous punctate regions in which the apposing plasma membranes were separated by only 7-10 nm. The Golgi apparatus of the target neuron hypertrophied, and its production of coated vesicles increased. Similar vesicles were seen in continuity with the SCG plasmalemma near the close contact site; their apparent contribution of a region of postsynaptic membrane with undercoating was considered to be the first definitive sign of synapse formation. Tracer work with peroxidase and ferritin confirmed that the traffic of coated vesicles within the neuronal soma is largely from Golgi region to somal surface. Subsequent to the appearance of postsynaptic density, the form and content of the growth cone was altered by the loss of filopodia and the appearance of synaptic vesicles which gradually became clustered opposite the postsynaptic density. As the synapse matured, synaptic vesicles increased in number, cleft width and content increased, presynaptic density appeared, branched membranous reticulum became greatly diminished, and most lysosomal structures disappeared. Coated vesicles continued to be associated with the postsynaptic membrane at all stages of maturation. The incorporation of Golgi-derived vesicles into discrete regions of the cell membrane could provide the mechanism for confining specific characteristics of the neuronal membrane to the synaptic region.

Full Text

The Full Text of this article is available as a PDF (7.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abercrombie M. Contact inhibition in tissue culture. In Vitro. 1970 Sep-Oct;6(2):128–142. doi: 10.1007/BF02616114. [DOI] [PubMed] [Google Scholar]
  2. Adinolfi A. M. Morphogenesis of synaptic junctions in layers I and II of the somatic sensory cortex. Exp Neurol. 1972 Mar;34(3):372–382. doi: 10.1016/0014-4886(72)90035-0. [DOI] [PubMed] [Google Scholar]
  3. Ainsworth S. K., Karnovsky M. J. An ultrastructural staining method for enhancing the size and electron opacity of ferritin in thin sections. J Histochem Cytochem. 1972 Mar;20(3):225–229. doi: 10.1177/20.3.225. [DOI] [PubMed] [Google Scholar]
  4. Altman J. Coated vesicles and synaptogenesis. A developmental study in the cerebellar cortex of the rat. Brain Res. 1971 Jul 23;30(2):311–322. doi: 10.1016/0006-8993(71)90081-3. [DOI] [PubMed] [Google Scholar]
  5. Benes F., Higgins J. A., Barrnett R. J. Ultrastructural localization of phospholipid synthesis in the rat trigeminal nerve during myelination. J Cell Biol. 1973 Jun;57(3):613–629. doi: 10.1083/jcb.57.3.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bennett G., Leblond C. P. Formation of cell coat material for the whole surface of columnar cells in the rat small intestine, as visualized by radioautography with L-fucose-3H. J Cell Biol. 1970 Aug;46(2):409–416. doi: 10.1083/jcb.46.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bennett G., Leblond C. P., Haddad A. Migration of glycoprotein from the Golgi apparatus to the surface of various cell types as shown by radioautography after labelled fucose injection into rats. J Cell Biol. 1974 Jan;60(1):258–284. doi: 10.1083/jcb.60.1.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bloom F. E., Aghajanian G. K. Cytochemistry of synapses: selective staining for electron microscopy. Science. 1966 Dec 23;154(3756):1575–1577. doi: 10.1126/science.154.3756.1575. [DOI] [PubMed] [Google Scholar]
  9. Bodian D. Development of fine structure of spinal cord in monkey fetuses. II. Pre-reflex period to period of long intersegmental reflexes. J Comp Neurol. 1968 Jun;133(2):113–166. doi: 10.1002/cne.901330202. [DOI] [PubMed] [Google Scholar]
  10. Bonneville M. A., Weinstock M. Brush border development in the intestinal absorptive cells of Xenopus during metamorphosis. J Cell Biol. 1970 Jan;44(1):151–171. doi: 10.1083/jcb.44.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bray D. Branching patterns of individual sympathetic neurons in culture. J Cell Biol. 1973 Mar;56(3):702–712. doi: 10.1083/jcb.56.3.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bray D. Surface movements during the growth of single explanted neurons. Proc Natl Acad Sci U S A. 1970 Apr;65(4):905–910. doi: 10.1073/pnas.65.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bunge M. B., Bunge R. P., Peterson E. R. The onset of synapse formation in spinal cord cultures as studied by electron microscopy. Brain Res. 1967 Dec;6(4):728–749. doi: 10.1016/0006-8993(67)90129-1. [DOI] [PubMed] [Google Scholar]
  14. Bunge M. B. Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture. J Cell Biol. 1973 Mar;56(3):713–735. doi: 10.1083/jcb.56.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bunge R. P., Wood P. Studies on the transplantation of spinal cord tissue in the rat. I. The development of a culture system for hemisections of embryonic spinal cord. Brain Res. 1973 Jul 27;57(2):261–276. doi: 10.1016/0006-8993(73)90135-2. [DOI] [PubMed] [Google Scholar]
  16. Chlapowski F. J., Band R. N. Assembly of lipids into membranes in Acanthamoeba palestinensis. II. The origin and fate of glycerol- 3 H--labeled phospholipids of cellular membranes. J Cell Biol. 1971 Sep;50(3):634–651. doi: 10.1083/jcb.50.3.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Cohen M. W. The development of neuromuscular connexions in the presence of D-tubocurarine. Brain Res. 1972 Jun 22;41(2):457–463. doi: 10.1016/0006-8993(72)90515-x. [DOI] [PubMed] [Google Scholar]
  18. Ehrenreich J. H., Bergeron J. J., Siekevitz P., Palade G. E. Golgi fractions prepared from rat liver homogenates. I. Isolation procedure and morphological characterization. J Cell Biol. 1973 Oct;59(1):45–72. doi: 10.1083/jcb.59.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fambrough D., Hartzell H. C., Rash J. E., Ritchie A. K. Trophic functions of the neuron. I. Development of neural connections. Receptor properties of developing muscle. Ann N Y Acad Sci. 1974 Mar 22;228(0):47–62. doi: 10.1111/j.1749-6632.1974.tb20501.x. [DOI] [PubMed] [Google Scholar]
  20. Friend D. S., Farquhar M. G. Functions of coated vesicles during protein absorption in the rat vas deferens. J Cell Biol. 1967 Nov;35(2):357–376. doi: 10.1083/jcb.35.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. GLEES P., SHEPPARD B. L. ELECTRON MICROSCOPICAL STUDIES OF THE SYNAPSE IN THE DEVELOPING CHICK SPINAL CORD. Z Zellforsch Mikrosk Anat. 1964 Apr 9;62:356–362. doi: 10.1007/BF00339285. [DOI] [PubMed] [Google Scholar]
  22. Gilula N. B., Reeves O. R., Steinbach A. Metabolic coupling, ionic coupling and cell contacts. Nature. 1972 Feb 4;235(5336):262–265. doi: 10.1038/235262a0. [DOI] [PubMed] [Google Scholar]
  23. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  24. Grainger F., James D. W. Association of glial cells with the terminal parts of neurite bundles extending from chick spinal cord in vitro. Z Zellforsch Mikrosk Anat. 1970;108(1):93–104. doi: 10.1007/BF00335945. [DOI] [PubMed] [Google Scholar]
  25. Haddad A., Smith M. D., Herscovics A., Nadler N. J., Leblond C. P. Radioautographic study of in vivo and in vitro incorporation of fucose-3H into thyroglobulin by rat thyroid follicular cells. J Cell Biol. 1971 Jun;49(3):856–877. doi: 10.1083/jcb.49.3.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hayes B. P., Roberts A. The distribution of synapses along the spinal cord of an amphibian embryo: an electron microscope study of junction development. Cell Tissue Res. 1974;153(2):227–244. doi: 10.1007/BF00226611. [DOI] [PubMed] [Google Scholar]
  27. Heaysman J. E., Pegrum S. M. Early contacts between fibroblasts. An ultrastructural study. Exp Cell Res. 1973 Mar 30;78(1):71–78. doi: 10.1016/0014-4827(73)90039-6. [DOI] [PubMed] [Google Scholar]
  28. Heaysman J. E., Pegrum S. M. Early contacts between normal fibroblasts and mouse sarcoma cells. An ultrastructural study. Exp Cell Res. 1973 Apr;78(2):479–481. doi: 10.1016/0014-4827(73)90098-0. [DOI] [PubMed] [Google Scholar]
  29. Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hicks R. M. The function of the golgi complex in transitional epithelium. Synthesis of the thick cell membrane. J Cell Biol. 1966 Sep;30(3):623–643. doi: 10.1083/jcb.30.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Hirano A., Dembitzer H. M. Observations on the development of the Weaver mouse cerebellum. J Neuropathol Exp Neurol. 1974 Jul;33(3):354–364. doi: 10.1097/00005072-197407000-00002. [DOI] [PubMed] [Google Scholar]
  32. Holtzman E., Novikoff A. B., Villaverde H. Lysosomes and GERL in normal and chromatolytic neurons of the rat ganglion nodosum. J Cell Biol. 1967 May;33(2):419–435. doi: 10.1083/jcb.33.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Holtzman E., Peterson E. R. Uptake of protein by mammalian neurons. J Cell Biol. 1969 Mar;40(3):863–869. doi: 10.1083/jcb.40.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hülser D. F., Demsey A. Gap and low-resistance junctions between cells in culture. Z Naturforsch C. 1973 Sep-Oct;28(9):603–606. doi: 10.1515/znc-1973-9-1019. [DOI] [PubMed] [Google Scholar]
  35. Jamieson J. D., Palade G. E. Synthesis, intracellular transport, and discharge of secretory proteins in stimulated pancreatic exocrine cells. J Cell Biol. 1971 Jul;50(1):135–158. doi: 10.1083/jcb.50.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Jones E. G., Powell T. P. An electron microscopic study of terminal degeneration in the neocortex of the cat. Philos Trans R Soc Lond B Biol Sci. 1970 Jan 29;257(812):29–43. doi: 10.1098/rstb.1970.0006. [DOI] [PubMed] [Google Scholar]
  37. Kanaseki T., Kadota K. The "vesicle in a basket". A morphological study of the coated vesicle isolated from the nerve endings of the guinea pig brain, with special reference to the mechanism of membrane movements. J Cell Biol. 1969 Jul;42(1):202–220. doi: 10.1083/jcb.42.1.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kawana E., Sandri C., Akert K. Ultrastructure of growth cones in the cerebellar cortex of the neonatal rat and cat. Z Zellforsch Mikrosk Anat. 1971;115(2):284–298. doi: 10.1007/BF00391129. [DOI] [PubMed] [Google Scholar]
  39. Kuhn C., 3rd, Callaway L. A., Askin F. B. The formation of granules in the bronchiolar Clara cells of the rat. 1. Electron microscopy,. J Ultrastruct Res. 1974 Dec;49(3):387–400. doi: 10.1016/s0022-5320(74)90052-5. [DOI] [PubMed] [Google Scholar]
  40. LEIBOVITZ A. THE GROWTH AND MAINTENANCE OF TISSUE-CELL CULTURES IN FREE GAS EXCHANGE WITH THE ATMOSPHERE. Am J Hyg. 1963 Sep;78:173–180. doi: 10.1093/oxfordjournals.aje.a120336. [DOI] [PubMed] [Google Scholar]
  41. LaVail J. H., LaVail M. M. The retrograde intraaxonal transport of horseradish peroxidase in the chick visual system: a light and electron microscopic study. J Comp Neurol. 1974 Oct 1;157(3):303–357. doi: 10.1002/cne.901570304. [DOI] [PubMed] [Google Scholar]
  42. Landmesser L., Pilar G. The onset and development of transmission in the chick ciliary ganglion. J Physiol. 1972 May;222(3):691–713. doi: 10.1113/jphysiol.1972.sp009822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ludueña M. A. The growth of spinal ganglion neurons in serum-free medium. Dev Biol. 1973 Aug;33(2):470–476. doi: 10.1016/0012-1606(73)90152-8. [DOI] [PubMed] [Google Scholar]
  44. MOLLENHAUER H. H. PLASTIC EMBEDDING MIXTURES FOR USE IN ELECTRON MICROSCOPY. Stain Technol. 1964 Mar;39:111–114. [PubMed] [Google Scholar]
  45. Maul G. G., Brumbaugh J. A. On the possible function of coated vesicles in melanogenesis of the regenerating fowl feather. J Cell Biol. 1971 Jan;48(1):41–48. doi: 10.1083/jcb.48.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. NAKAI J., KAWASAKI Y. Studies on the mechanism determining the course of nerve fibers in tissue culture. I. The reaction of the growth cone to various obstructions. Z Zellforsch Mikrosk Anat. 1959;51:108–122. doi: 10.1007/BF00345083. [DOI] [PubMed] [Google Scholar]
  47. Nauta H. J., Kaiserman-Abramof I. R., Lasek R. J. Electron microscopic observations of horseradish peroxidase transported from the caudoputamen to the substantia nigra in the rat: possible involvement of the agranular reticulum. Brain Res. 1975 Mar 7;85(3):373–384. doi: 10.1016/0006-8993(75)90814-8. [DOI] [PubMed] [Google Scholar]
  48. Neutra M., Leblond C. P. Synthesis of the carbohydrate of mucus in the golgi complex as shown by electron microscope radioautography of goblet cells from rats injected with glucose-H3. J Cell Biol. 1966 Jul;30(1):119–136. doi: 10.1083/jcb.30.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Nichols B. A., Bainton D. F., Farquhar M. G. Differentiation of monocytes. Origin, nature, and fate of their azurophil granules. J Cell Biol. 1971 Aug;50(2):498–515. doi: 10.1083/jcb.50.2.498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Novikoff P. M., Novikoff A. B., Quintana N., Hauw J. J. Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick section and thin section cytochemistry. J Cell Biol. 1971 Sep;50(3):859–886. doi: 10.1083/jcb.50.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. O'Lague P. H., Obata K., Claude P., Furshpan E. J., Potter D. D. Evidence for cholinergic synapses between dissociated rat sympathetic neurons in cell culture. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3602–3606. doi: 10.1073/pnas.71.9.3602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Obata K. Transmitter sensitivities of some nerve and muscle cells in culture. Brain Res. 1974 Jun 14;73(1):71–88. doi: 10.1016/0006-8993(74)91008-7. [DOI] [PubMed] [Google Scholar]
  53. Olson M. I., Bunge R. P. Anatomical observations on the specificity of synapse formation in tissue culture. Brain Res. 1973 Sep 14;59:19–33. doi: 10.1016/0006-8993(73)90251-5. [DOI] [PubMed] [Google Scholar]
  54. Oppenheim R. W., Foelix R. F. Synaptogenesis in the chick embryo spinal cord. Nat New Biol. 1972 Jan 26;235(56):126–128. doi: 10.1038/newbio235126a0. [DOI] [PubMed] [Google Scholar]
  55. Pfenninger K. H., Bunge R. P. Freeze-fracturing of nerve growth cones and young fibers. A study of developing plasma membrane. J Cell Biol. 1974 Oct;63(1):180–196. doi: 10.1083/jcb.63.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. ROSENBLUTH J., WISSIG S. L. THE DISTRIBUTION OF EXOGENOUS FERRITIN IN TOAD SPINAL GANGLIA AND THE MECHANISM OF ITS UPTAKE BY NEURONS. J Cell Biol. 1964 Nov;23:307–325. doi: 10.1083/jcb.23.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Raisman G., Field P. M., Ostberg A. J., Iversen L. L., Zigmond R. E. A quantitative ultrastructural and biochemical analysis of the process of reinnervation of the superior cervical ganglion in the adult rat. Brain Res. 1974 May 10;71(1):1–16. doi: 10.1016/0006-8993(74)90187-5. [DOI] [PubMed] [Google Scholar]
  58. Rees R., Bunge R. P. Morphological and cytochemical studies of synapses formed in culture between isolated rat superior cervical ganglion neurons. J Comp Neurol. 1974 Sep 1;157(1):1–11. doi: 10.1002/cne.901570102. [DOI] [PubMed] [Google Scholar]
  59. Revel J. P., Yee A. G., Hudspeth A. J. Gap junctions between electrotonically coupled cells in tissue culture and in brown fat. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2924–2927. doi: 10.1073/pnas.68.12.2924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Rodewald R. Intestinal transport of antibodies in the newborn rat. J Cell Biol. 1973 Jul;58(1):189–211. doi: 10.1083/jcb.58.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Scott B. S. Effect of potassium on neuron survival in cultures of dissociated human nervous tissue. Exp Neurol. 1971 Feb;30(2):297–308. doi: 10.1016/s0014-4886(71)80009-2. [DOI] [PubMed] [Google Scholar]
  62. Simionescu N., Simionescu M., Palade G. E. Permeability of muscle capillaries to exogenous myoglobin. J Cell Biol. 1973 May;57(2):424–452. doi: 10.1083/jcb.57.2.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Stelzner D. J., Martin A. H., Scott G. L. Early stages of synaptogenesis in the cervical spinal cord of the chick embryo. Z Zellforsch Mikrosk Anat. 1973;138(4):475–488. doi: 10.1007/BF00572291. [DOI] [PubMed] [Google Scholar]
  64. Teichberg S., Holtzman E. Axonal agranular reticulum and synaptic vesicles in cultured embryonic chick sympathetic neurons. J Cell Biol. 1973 Apr;57(1):88–108. doi: 10.1083/jcb.57.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Waxman S. G., Pappas G. D. Pinocytosis at postsynaptic membranes: electron microscopic evidence. Brain Res. 1969 Jun;14(1):240–244. doi: 10.1016/0006-8993(69)90048-1. [DOI] [PubMed] [Google Scholar]
  67. Weinstock A., Leblond C. P. Elaboration of the matrix glycoprotein of enamel by the secretory ameloblasts of the rat incisor as revealed by radioautography after galactose- 3 H injection. J Cell Biol. 1971 Oct;51(1):26–51. doi: 10.1083/jcb.51.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Weinstock M., Leblond C. P. Synthesis, migration, and release of precursor collagen by odontoblasts as visualized by radioautography after (3H)proline administration. J Cell Biol. 1974 Jan;60(1):92–127. doi: 10.1083/jcb.60.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Whaley W. G., Dauwalder M., Kephart J. E. Golgi apparatus: influence on cell surfaces. Science. 1972 Feb 11;175(4022):596–599. doi: 10.1126/science.175.4022.596. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES