Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Feb 1;68(2):276–286. doi: 10.1083/jcb.68.2.276

Sorting out of normal and virus-transformed cells in cellular aggregates

PMCID: PMC2109634  PMID: 1245549

Abstract

The sorting-out behavior (self-segregation of two cell types from mixtures of the two) of five different established cell lines was studied. Eight of the ten possible binary combinations of these lines, cultured as cellular aggregates, were examined. Mouse BALB/c 3T3 cells sorted out internally to the corresponding malignant SV40 virus- transformed 3T3 cells. The transformed 3T3 line (SVT-2) did not sort out from a revertant line selected from SVT-2 cells by resistance to concanavalin A (con A). The revertant cells sorted out externally to the parent BALB/c 3T3 cells, although segregation was generally incomplete. BALB/c 3T3 cells did not sort out from another contact- inhibited line of 3T3 cells derived from Swiss albino mice (Swiss 3T3). Both BALB/c 3T3 and Swiss 3T3 cells sorted out from cells of the contact-inhibited hamster line, NIL B. Instead of a two-layered sphere, however, a three-layered structure was observed with most of the NIL B cells external to the 3T3 cells, and a few NIL B cells comprising the center of the sphere. On the other hand, NIL B cells did not consistently sort out from either the SVT-2 or con A cells. In general, sorting out between pairs of these five lines are slower and less complete than is generally observed between the more extensively studied chick embryonic tissue cells, suggesting that the cultured cells may be more closely related in their adhesive properties. The internal segregation of BALB/c 3T3 cells relative to SVT-2 cells is consistent with the hypothesis that transformed cells are less adhesive than their nontransformed counterparts.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABERCROMBIE M., HEAYSMAN J. E., KARTHAUSER H. M. Social behaviour of cells in tissue culture. III. Mutual influence of sarcoma cells and fibroblasts. Exp Cell Res. 1957 Oct;13(2):276–291. doi: 10.1016/0014-4827(57)90007-1. [DOI] [PubMed] [Google Scholar]
  2. Aaronson S. A., Todaro G. J. Development of 3T3-like lines from Balb-c mouse embryo cultures: transformation susceptibility to SV40. J Cell Physiol. 1968 Oct;72(2):141–148. doi: 10.1002/jcp.1040720208. [DOI] [PubMed] [Google Scholar]
  3. BARSKI G., BELEHRADEK J., Jr ETUDE MICROCIN'EMATOGRAPHIQUE DU M'ECANISME D'INVASION CANC'EREUSE EN CULTURES DE TISSU NORMAL ASSOCI'E AUX CELLULES MALIGNES. Exp Cell Res. 1965 Feb;37:464–480. doi: 10.1016/0014-4827(65)90194-1. [DOI] [PubMed] [Google Scholar]
  4. Burdick M. L. Cell sorting out according to species in aggregates containing mouse and chick embryonic limb mesoblast cells. J Exp Zool. 1970 Nov;175(3):357–367. doi: 10.1002/jez.1401750309. [DOI] [PubMed] [Google Scholar]
  5. Carter S. B. Haptotaxis and the mechanism of cell motility. Nature. 1967 Jan 21;213(5073):256–260. doi: 10.1038/213256a0. [DOI] [PubMed] [Google Scholar]
  6. Carter S. B. Principles of cell motility: the direction of cell movement and cancer invasion. Nature. 1965 Dec 18;208(5016):1183–1187. doi: 10.1038/2081183a0. [DOI] [PubMed] [Google Scholar]
  7. Cassiman J. J., Bernfield M. R. Morphogenetic properties of human embryonic cells: aggregation of dissociated cells and histogenesis in cultured aggregates. Pediatr Res. 1974 Mar;8(3):184–192. doi: 10.1203/00006450-197403000-00006. [DOI] [PubMed] [Google Scholar]
  8. Culp L. A., Black P. H. Contact-inhibited revertant cell lines isolated from simian virus 40-transformed cells. 3. Concanavalin A-selected revertant cells. J Virol. 1972 Apr;9(4):611–620. doi: 10.1128/jvi.9.4.611-620.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Culp L. A., Grimes W. J., Black P. H. Contact-inhibited revertant cell lines isolated from SV40-transformed cells. I. Biologic, virologic, and chemical properties. J Cell Biol. 1971 Sep;50(3):682–690. doi: 10.1083/jcb.50.3.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Culp L. A. Substrate-attached glycoproteins mediating adhesion of normal and virus-transformed mouse fibroblasts. J Cell Biol. 1974 Oct;63(1):71–83. doi: 10.1083/jcb.63.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Diamond L. Two spontaneously transformed cell lines derived from the same hamster embryo culture. Int J Cancer. 1967 Mar 15;2(2):143–152. doi: 10.1002/ijc.2910020209. [DOI] [PubMed] [Google Scholar]
  12. Dodson E. O. Aggregation of tumour cells. Nature. 1966 Jan 1;209(5018):40–44. doi: 10.1038/209040a0. [DOI] [PubMed] [Google Scholar]
  13. EASTY G. C., EASTY D. M. AN ORGAN CULTURE SYSTEM FOR THE EXAMINATION OF TUMOR INVASION. Nature. 1963 Sep 14;199:1104–1105. doi: 10.1038/1991104a0. [DOI] [PubMed] [Google Scholar]
  14. Gershman H., Drumm J. Mobility of normal and virus-transformed cells in cellular aggregates. J Cell Biol. 1975 Nov;67(2PT1):419–435. doi: 10.1083/jcb.67.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Halpern B., Pejsachowicz B., Febvre H. L., Barski G. Differences in patterns of aggregation of malignant and non-malignant mammalian cells. Nature. 1966 Jan 8;209(5019):157–159. doi: 10.1038/209157a0. [DOI] [PubMed] [Google Scholar]
  16. Heaysman J. E., Pegrum S. M. Early contacts between normal fibroblasts and mouse sarcoma cells. An ultrastructural study. Exp Cell Res. 1973 Apr;78(2):479–481. doi: 10.1016/0014-4827(73)90098-0. [DOI] [PubMed] [Google Scholar]
  17. MOSCONA A., MOSCONA H. The dissociation and aggregation of cells from organ rudiments of the early chick embryo. J Anat. 1952 Jul;86(3):287–301. [PMC free article] [PubMed] [Google Scholar]
  18. MOSKOWITZ M. AGGREGATION OF CULTURED MAMMALIAN CELLS. Nature. 1963 Nov 30;200:854–856. doi: 10.1038/200854a0. [DOI] [PubMed] [Google Scholar]
  19. Moscona A. THE DEVELOPMENT IN VITRO OF CHIMERIC AGGREGATES OF DISSOCIATED EMBRYONIC CHICK AND MOUSE CELLS. Proc Natl Acad Sci U S A. 1957 Jan 15;43(1):184–194. doi: 10.1073/pnas.43.1.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Oppenheimer S. B., Edidin M., Orr C. W., Roseman S. An L-glutamine requirement for intercellular adhesion. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1395–1402. doi: 10.1073/pnas.63.4.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. STOKER M. REGULATION OF GROWTH AND ORIENTATION IN HAMSTER CELLS TRANSFORMED BY POLYOMA VIRUS. Virology. 1964 Oct;24:165–174. doi: 10.1016/0042-6822(64)90099-6. [DOI] [PubMed] [Google Scholar]
  22. Steinberg M. S. Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells. J Exp Zool. 1970 Apr;173(4):395–433. doi: 10.1002/jez.1401730406. [DOI] [PubMed] [Google Scholar]
  23. Subak-Sharpe H., Bürk R. R., Pitts J. D. Metabolic co-operation between biochemically marked mammalian cells in tissue culture. J Cell Sci. 1969 Mar;4(2):353–367. doi: 10.1242/jcs.4.2.353. [DOI] [PubMed] [Google Scholar]
  24. Vasiliev J. M., Gelfand I. M. Interactions of normal and neoplastic fibroblasts with the substratum. Ciba Found Symp. 1973;14:311–331. doi: 10.1002/9780470719978.ch15. [DOI] [PubMed] [Google Scholar]
  25. WOLFF E., SCHNEIDER N. La culture d'un sarcome de souris sur des organes de poulet explantés in vitro. Arch Anat Microsc Morphol Exp. 1957 Apr-Jun;46(2):173–197. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES