Abstract
Normally occurring neuron death and that brought about by prior removal of the peripheral target organ was studied ultrastructurally in embryonic chick ciliary ganglion in order to better understand the mechanism of cell death in this system. Before the period of cell death, all neurons in the normal ganglion developed a well-organized rough endoplasmic reticulum (RER) which coincided with peripheral synapse formation. None of the peripherally deprived neurons underwent this change, suggesting that some interaction with the periphery, possibly synapse formation, triggered them into the secretory state. Cell death in peripherally deprived neurons was signalled by nuclear changes followed by freeing of ribosomes from polysomes and RER and presumably cessation of protein synthesis. In contrast, normal cell death was brought about by dilation of the RER with eventual cytoplasmic disruption, nuclear changes appearing only secondarily. It is suggested that failure to form or maintain peripheral synapses could result in the accumulation of transmission-related proteins with consequent cisternal dilation, and eventual cell death.
Full Text
The Full Text of this article is available as a PDF (7.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barron K. D., Doolin P. F., Oldershaw J. B. Ultrastructural observations on retrograde atrophy of lateral geniculate body. I. Neuronal alterations. J Neuropathol Exp Neurol. 1967 Apr;26(2):300–326. doi: 10.1097/00005072-196704000-00007. [DOI] [PubMed] [Google Scholar]
- Bunge M. B. Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture. J Cell Biol. 1973 Mar;56(3):713–735. doi: 10.1083/jcb.56.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Byers B. Structure and formation of ribosome crystals in hypothermic chick embryo cells. J Mol Biol. 1967 Jun 14;26(2):155–167. doi: 10.1016/0022-2836(67)90288-4. [DOI] [PubMed] [Google Scholar]
- Cantino D., Sisto Daneo L. Cell death in the developing chick optic tectum. Brain Res. 1972 Mar 10;38(1):13–25. doi: 10.1016/0006-8993(72)90586-0. [DOI] [PubMed] [Google Scholar]
- Cheah T. B., Geffen L. B. Effects of axonal injury on norepinephrine, tyrosine hydroxylase and monoamine oxidase levels in sympathetic ganglia. J Neurobiol. 1973;4(5):443–452. doi: 10.1002/neu.480040505. [DOI] [PubMed] [Google Scholar]
- Cowan W. M., Wenger E. Cell loss in the trochlear nucleus of the chick during normal development and after radical extirpation of the optic vesicle. J Exp Zool. 1967 Mar;164(2):267–280. doi: 10.1002/jez.1401640210. [DOI] [PubMed] [Google Scholar]
- Cragg B. G. What is the signal for chromatolysis? Brain Res. 1970 Sep 29;23(1):1–21. doi: 10.1016/0006-8993(70)90345-8. [DOI] [PubMed] [Google Scholar]
- Dawd D. S., Hinchliffe J. R. Cell death in the "opaque patch" in the central mesenchyme of the developing chick limb: a cytological, cytochemical and electron microscopic analysis. J Embryol Exp Morphol. 1971 Dec;26(3):401–424. [PubMed] [Google Scholar]
- Droz B. Renewal of synaptic proteins. Brain Res. 1973 Nov 23;62(2):383–394. doi: 10.1016/0006-8993(73)90700-2. [DOI] [PubMed] [Google Scholar]
- HAMBURGER V., LEVI-MONTALCINI R. Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool. 1949 Aug;111(3):457–501. doi: 10.1002/jez.1401110308. [DOI] [PubMed] [Google Scholar]
- HAMBURGER V. Regression versus peripheral control of differentiation in motor hypoplasia. Am J Anat. 1958 May;102(3):365–409. doi: 10.1002/aja.1001020303. [DOI] [PubMed] [Google Scholar]
- HUGHES A. Cell degeneration in the larval ventral horn of Xenopus laevis (Daudin). J Embryol Exp Morphol. 1961 Jun;9:269–284. [PubMed] [Google Scholar]
- Hamburger V. Cell death in the development of the lateral motor column of the chick embryo. J Comp Neurol. 1975 Apr 15;160(4):535–546. doi: 10.1002/cne.901600408. [DOI] [PubMed] [Google Scholar]
- Haselkorn R., Rothman-Denes L. B. Protein synthesis. Annu Rev Biochem. 1973;42:397–438. doi: 10.1146/annurev.bi.42.070173.002145. [DOI] [PubMed] [Google Scholar]
- LITTAU V. C., ALLFREY V. G., FRENSTER J. H., MIRSKY A. E. ACTIVE AND INACTIVE REGIONS OF NUCLEAR CHROMATIN AS REVEALED BY ELECTRON MICROSCOPE AUTORADIOGRAPHY. Proc Natl Acad Sci U S A. 1964 Jul;52:93–100. doi: 10.1073/pnas.52.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LYSER K. M. EARLY DIFFERENTIATION OF MOTOR NEUROBLASTS IN THE CHICK EMBRYO AS STUDIED BY ELECTRON MICROSCOPY. I. GENERAL ASPECTS. Dev Biol. 1964 Dec;10:433–466. doi: 10.1016/0012-1606(64)90054-5. [DOI] [PubMed] [Google Scholar]
- Landmesser L., Pilar G. Synapse formation during embryogenesis on ganglion cells lacking a periphery. J Physiol. 1974 Sep;241(3):715–736. doi: 10.1113/jphysiol.1974.sp010680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landmesser L., Pilar G. Synaptic transmission and cell death during normal ganglionic development. J Physiol. 1974 Sep;241(3):737–749. doi: 10.1113/jphysiol.1974.sp010681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landmesser L., Pilar G. The onset and development of transmission in the chick ciliary ganglion. J Physiol. 1972 May;222(3):691–713. doi: 10.1113/jphysiol.1972.sp009822. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews M. R., Raisman G. A light and electron microscopic study of the cellular response to axonal injury in the superior cervical ganglion of the rat. Proc R Soc Lond B Biol Sci. 1972 Apr 18;181(1062):43–79. doi: 10.1098/rspb.1972.0040. [DOI] [PubMed] [Google Scholar]
- Morimoto T., Blobel G., Sabatini D. D. Ribosome crystallization in chicken embryos. II. Conditions for the formation of ribosome tetramers in vitro. J Cell Biol. 1972 Feb;52(2):355–366. doi: 10.1083/jcb.52.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Connor T. M., Wyttenbach C. R. Cell death in the embryonic chick spinal cord. J Cell Biol. 1974 Feb;60(2):448–459. doi: 10.1083/jcb.60.2.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PANNESE E. INVESTIGATIONS ON THE ULTRASTRUCTURAL CHANGES OF THE SPINAL GANGLION NEURONS IN THE COURSE OF AXON REGENERATION AND CELL HYPERTROPHY. I. CHANGES DURING AXON REGENERATION. Z Zellforsch Mikrosk Anat. 1963 Sep 3;60:711–740. doi: 10.1007/BF00343854. [DOI] [PubMed] [Google Scholar]
- Palay S. L., Billings-Gagliardi S., Chan-Palay V. Neuronal perikarya with dispersed, single ribosomes in the visual cortex of Macaca mulatta. J Cell Biol. 1974 Dec;63(3):1074–1089. doi: 10.1083/jcb.63.3.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pannese E. Developmental changes of the endoplasmic reticulum and ribosomes in nerve cells of the spinal ganglia of the domestic fowl. J Comp Neurol. 1968 Feb;132(2):331–364. doi: 10.1002/cne.901320207. [DOI] [PubMed] [Google Scholar]
- Pfenninger K. H., Bunge R. P. Freeze-fracturing of nerve growth cones and young fibers. A study of developing plasma membrane. J Cell Biol. 1974 Oct;63(1):180–196. doi: 10.1083/jcb.63.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pilar G., Landmesser L. Axotomy mimicked by localized colchicine application. Science. 1972 Sep 22;177(4054):1116–1118. doi: 10.1126/science.177.4054.1116. [DOI] [PubMed] [Google Scholar]
- Prestige M. C. The control of cell number in the lumbar spinal ganglia during the development of Xenopus laevis tadpoles. J Embryol Exp Morphol. 1967 Jun;17(3):453–471. [PubMed] [Google Scholar]
- Prestige M. C. The control of cell number in the lumbar ventral horns during the development of Xenopus laevis tadpoles. J Embryol Exp Morphol. 1967 Dec;18(3):359–387. [PubMed] [Google Scholar]
- Prestige M. C., Wilson M. A. A quantitative study of the growth and development of the ventral root in normal and experimental conditions. J Embryol Exp Morphol. 1974 Dec;32(3):819–833. [PubMed] [Google Scholar]
- ROSS R., BENDITT E. P. WOUND HEALING AND COLLAGEN FORMATION. IV. DISTORTION OF RIBOSOMAL PATTERNS OF FIBROBLASTS IN SCURVY. J Cell Biol. 1964 Aug;22:365–389. doi: 10.1083/jcb.22.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reis D. J., Ross R. A. Dynamic changes in brain dopamine-beta-hydroxylase activity during anterograde and retrograde reactions to injury of central noradrenergic axons. Brain Res. 1973 Jul 27;57(2):307–326. doi: 10.1016/0006-8993(73)90139-x. [DOI] [PubMed] [Google Scholar]
- Skoff R. P., Hamburger V. Fine structure of dendritic and axonal growth cones in embryonic chick spinal cord. J Comp Neurol. 1974 Jan 15;153(2):107–147. doi: 10.1002/cne.901530202. [DOI] [PubMed] [Google Scholar]
- Sulkin D. F., Sulkin N. M. An electron microscopic study of autonomic ganglion cells of guinea pigs during ascorbic acid deficiency and partial inanition. Lab Invest. 1967 Jan;16(1):142–152. [PubMed] [Google Scholar]
- Tennyson V. M. The fine structure of the axon and growth cone of the dorsal root neuroblast of the rabbit embryo. J Cell Biol. 1970 Jan;44(1):62–79. doi: 10.1083/jcb.44.1.62. [DOI] [PMC free article] [PubMed] [Google Scholar]