Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Mar 1;68(3):799–802. doi: 10.1083/jcb.68.3.799

Ectogalactosyltransferase studies in fibroblasts and concanavalin A- stimulated lymphocytes

PMCID: PMC2109644  PMID: 1030711

Abstract

In this communication, we have demonstrated that hydrolysis of the nucleotide sugar can cause errors in the detection of an ectoglycosyltransferase. Spleen cell suspensions can incorporate radioactivity when incubated with labeled UDP-galactose, but all the activity is due to decomposition of the nucleotide sugar and uptake of the free sugar. The fibroblast cell lines can incroporate carbohydrate directly from UDP-galactose. Several criteria are presented with can be used to demonstrate that a nucleotide sugar is the direct carbohydrate donor.

Full Text

The Full Text of this article is available as a PDF (266.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bischoff E., Liersch M., Keppler D., Decker K. Fate of intravenously administered UDPglucose. Hoppe Seylers Z Physiol Chem. 1970 Jun;351(6):729–736. doi: 10.1515/bchm2.1970.351.1.729. [DOI] [PubMed] [Google Scholar]
  2. DePierre J. W., Karnovsky M. L. Plasma membranes of mammalian cells: a review of methods for their characterization and isolation. J Cell Biol. 1973 Feb;56(2):275–303. doi: 10.1083/jcb.56.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Deppert W., Werchau H., Walter G. Differentiation between intracellular and cell surface glycosyl transferases: galactosyl transferase activity in intact cells and in cell homogenate. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3068–3072. doi: 10.1073/pnas.71.8.3068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Evans W. H. Nucleotide pyrophosphatase, a sialoglycoprotein located on the hepatocyte surface. Nature. 1974 Aug 2;250(465):391–394. doi: 10.1038/250391a0. [DOI] [PubMed] [Google Scholar]
  5. Geren L. M., Ebner K. E. Folic acid effects on glycoprotein-galactosyltransferase: a re-assessment. Biochem Biophys Res Commun. 1974 Jul 10;59(1):14–21. doi: 10.1016/s0006-291x(74)80167-1. [DOI] [PubMed] [Google Scholar]
  6. Kletzien R. F., Perdue J. F. Sugar transport in chick embryo fibroblasts. I. A functional change in the plasma membrane associated with the rate of cell growth. J Biol Chem. 1974 Jun 10;249(11):3366–3374. [PubMed] [Google Scholar]
  7. Lamont J. T., Perrotto J. L., Weiser M. M., Isselbacher K. J. Cell surface galactosyltransferase and lectin agglutination of thymus and spleen lymphocytes. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3726–3730. doi: 10.1073/pnas.71.9.3726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Patt L. M., Grimes W. J. Cell surface glycolipid and glycoprotein glycosyltransferases of normal and transformed cells. J Biol Chem. 1974 Jul 10;249(13):4157–4165. [PubMed] [Google Scholar]
  9. Renner E. D., Plagemann P. G., Bernlohr R. W. Permeation of glucose by simple and facilitated diffusion by Novikoff rat hepatoma cells in suspension culture and its relationship to glucose metabolism. J Biol Chem. 1972 Sep 25;247(18):5765–5776. [PubMed] [Google Scholar]
  10. Roseman S. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids. 1970 Oct;5(1):270–297. doi: 10.1016/0009-3084(70)90024-1. [DOI] [PubMed] [Google Scholar]
  11. Roth S. A molecular model for cell interactions. Q Rev Biol. 1973 Dec;48(4):541–563. doi: 10.1086/407816. [DOI] [PubMed] [Google Scholar]
  12. Weber M. J. Hexose transport in normal and in Rous sarcoma virus-transformed cells. J Biol Chem. 1973 May 10;248(9):2978–2983. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES