Abstract
A systematic survey of endothelial junctions in elastic (aorta) and muscular (mesenteric) arteries and in medium (renal and mesenteric) and large (cava inferior) size veins has been carried out in the rat using freeze-cleaved preparations. The arterial endothelium is provided with a complex of occluding and communicating junctions (gap junctions) comparable to, though less elaborate than, that described in arterioles. The particles of the occluding junctions behave like "single unit" particles and have the tendency to remain on B faces upon membrane cleavage. In the venous endothelium the junctions take the form of long occluding junctions with few associated communicating junctions (maculae communicantes). As in arterial endothelium, the junctional particles appear preferentially on B faces in cleaved preparations. These structures, although continuous over long distances, are interrupted focally by areas in which the junctional elements are similar to those found in venules: the ridges and grooves are short, discontinuous, randomly distributed along the general line of cell contact, and often particle-free. In muscular arteries two unusual types of junctions are encountered. Both are disposed in loops over short distances along the perimeter of the cell. One type appears to be a strectched-out version of the usual combination of occluding and communcating junctions of the arterial endothelium (this type is also occasionally encountered in the venous endothelium). The other type is reminiscent of the septate junctions found in the epithelia of invertebrates but the apparent similarity remains to be checked by further work.
Full Text
The Full Text of this article is available as a PDF (7.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chalcroft J. P., Bullivant S. An interpretation of liver cell membrane and junction structure based on observation of freeze-fracture replicas of both sides of the fracture. J Cell Biol. 1970 Oct;47(1):49–60. doi: 10.1083/jcb.47.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Constantinides P., Robinson M. Ultrastructural injury of arterial endothelium. 1. Effects of pH, osmolarity, anoxia, and temperature. Arch Pathol. 1969 Aug;88(2):99–105. [PubMed] [Google Scholar]
- FRIEDMAN M., BYERS S. O. Endothelial permeability in atherosclerosis. Arch Pathol. 1963 Jul;76:99–105. [PubMed] [Google Scholar]
- Florey L., Sheppard B. L. The permeability of arterial endothelium to horseradish peroxidase. Proc R Soc Lond B Biol Sci. 1970 Jan 20;174(1037):435–443. doi: 10.1098/rspb.1970.0003. [DOI] [PubMed] [Google Scholar]
- Flower N. E., Filshie B. K. Junctional structures in the midgut cells of lepidopteran caterpillars. J Cell Sci. 1975 Jan;17(1):221–239. doi: 10.1242/jcs.17.1.221. [DOI] [PubMed] [Google Scholar]
- Gerrity R. G., Cliff W. J. The aortic tunica intima in young and aging rats. Exp Mol Pathol. 1972 Jun;16(3):382–402. doi: 10.1016/0014-4800(72)90012-3. [DOI] [PubMed] [Google Scholar]
- Giacomelli F., Wiener J. Regional variation in the permeability of rat thoracic aorta. Am J Pathol. 1974 Jun;75(3):513–528. [PMC free article] [PubMed] [Google Scholar]
- Gilula N. B., Satir P. Septate and gap junctions in molluscan gill epithelium. J Cell Biol. 1971 Dec;51(3):869–872. doi: 10.1083/jcb.51.3.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gobel S. Axo-axonic septate junctions in the basket formations of the cat cerebellar cortex. J Cell Biol. 1971 Oct;51(1):328–333. doi: 10.1083/jcb.51.1.328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hand A. R., Gobel S. The structural organization of the septate and gap junctions of Hydra. J Cell Biol. 1972 Feb;52(2):397–408. doi: 10.1083/jcb.52.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hüttner I., Boutet M., More R. H. Gap junctions in arterial endothelium. J Cell Biol. 1973 Apr;57(1):247–252. doi: 10.1083/jcb.57.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hüttner I., Boutet M., More R. H. Studies on protein passage through arterial endothelium. I. Structural correlates of permeability in rat arterial endothelium. Lab Invest. 1973 Jun;28(6):672–677. [PubMed] [Google Scholar]
- Hüttner I., Boutet M., More R. H. Studies on protein passage through arterial endothelium. II. Regional differences in permeability to fine structural protein tracers in arterial endothelium of normotensive rat. Lab Invest. 1973 Jun;28(6):678–685. [PubMed] [Google Scholar]
- Hüttner I., Boutet M., Rona G., More R. H. Studies on protein passage through arterial endothelium. 3. Effect of blood pressure levels on the passage of fine structural protein tracers through rat arterial endothelium. Lab Invest. 1973 Nov;29(5):536–546. [PubMed] [Google Scholar]
- Hüttner I., More R. H., Rona G. Fine structural evidence of specific mechanism for increased endothelial permeability in experimental hypertension. Am J Pathol. 1970 Dec;61(3):395–412. [PMC free article] [PubMed] [Google Scholar]
- Klynstra F. B., Böttcher C. J. Permeability patterns in pig aorta. Atherosclerosis. 1970 May-Jun;11(3):451–462. doi: 10.1016/0021-9150(70)90023-7. [DOI] [PubMed] [Google Scholar]
- Majno G., Shea S. M., Leventhal M. Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol. 1969 Sep;42(3):647–672. doi: 10.1083/jcb.42.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNutt N. S., Weinstein R. S. Membrane ultrastructure at mammalian intercellular junctions. Prog Biophys Mol Biol. 1973;26:45–101. doi: 10.1016/0079-6107(73)90017-5. [DOI] [PubMed] [Google Scholar]
- Pries C., Klynstra F. B. Aortic permeability, lipids, and atherosclerosis. Lancet. 1971 Apr 10;1(7702):750–751. doi: 10.1016/s0140-6736(71)92013-7. [DOI] [PubMed] [Google Scholar]
- Robertson A. L., Jr, Khairallah P. A. Arterial endothelial permeability and vascular disease. The "trap door" effect. Exp Mol Pathol. 1973 Apr;18(2):241–260. doi: 10.1016/0014-4800(73)90022-1. [DOI] [PubMed] [Google Scholar]
- Schwartz S. M., Benditt E. P. Studies on aortic intima. I. Structure and permeability of rat thoracic aortic intima. Am J Pathol. 1972 Feb;66(2):241–264. [PMC free article] [PubMed] [Google Scholar]
- Simionescu M., Simionescu N., Palade G. E. Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J Cell Biol. 1975 Dec;67(3):863–885. doi: 10.1083/jcb.67.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staehelin L. A. Structure and function of intercellular junctions. Int Rev Cytol. 1974;39:191–283. doi: 10.1016/s0074-7696(08)60940-7. [DOI] [PubMed] [Google Scholar]
- Stein O., Stein Y. An electron microscopic study of the transport of peroxidases in the endothelium of mouse aorta. Z Zellforsch Mikrosk Anat. 1972;133(2):211–222. doi: 10.1007/BF00307143. [DOI] [PubMed] [Google Scholar]
- Suzuki K., Ookawara S., Ooneda G. Increased permeability of the arteries in hypertensive rats: an electron microscopic study. Exp Mol Pathol. 1971 Oct;15(2):198–208. doi: 10.1016/0014-4800(71)90099-2. [DOI] [PubMed] [Google Scholar]
- Wade J. B., Karnovsky M. J. The structure of the zonula occludens. A single fibril model based on freeze-fracture. J Cell Biol. 1974 Jan;60(1):168–180. doi: 10.1083/jcb.60.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yee A. G., Revel J. P. Endothelial cell junctions. J Cell Biol. 1975 Jul;66(1):200–204. doi: 10.1083/jcb.66.1.200. [DOI] [PMC free article] [PubMed] [Google Scholar]