Abstract
The temperature-dependent assembly and the interaction of Acanthamoeba contractile proteins have been studied in a crude extract. A cold extract of soluble proteins from Acanthamoeba castellanii is prepared by homogenizing the cells in a sucrose-ATP-ethyleneglycol-bis-(beta- aminoethyl ether) N,N'-tetraacetic acid buffer and centrifuging at 136,000 g for 1 h. When this supernate of soluble proteins is warmed to room temperature, it forms a solid gel. Upon standing at room temperature, the gel slowly contracts and squeezes out soluble components. The rates of gelation and contraction are both highly temperature dependent, with activation energies of about 20 kcal per mol. Gel formation is dependent upon the presence of ATP and Mg++. Low concentrations of Ca++ accelerate the contractile phase of this phenomenon. The major protein component of the gel is actin. It is associated with myosin, cofactor, a high molecular weight protein tentatively identfied as actin-binding protein, and several other unidentified proteins. Actin has been purified from these gels and was found to be capable of forming a solid gel when polymerized in the presence of ATP, MgCl3, and KCL. The rate of purified actin polymerication is very temperature dependent and is accelerated by the addition of fragments of muscle actin filaments. These data suggest that Acanthamoeba contractile proteins have a dual role in the cell; they may generate the forces for cellular movements and also act as cytoskeletal elements by controlling the consistency of the cytoplasm.
Full Text
The Full Text of this article is available as a PDF (3.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN R. D., COOLEDGE J. W., HALL P. J. Streaming in cytoplasm dissociated from the giant amoeba, Chaos chaos. Nature. 1960 Sep 10;187:896–899. doi: 10.1038/187896a0. [DOI] [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buckley I. K. Three dimensional fine structure of cultured cells: possible implications for subcellular motility. Tissue Cell. 1975;7(1):51–72. doi: 10.1016/s0040-8166(75)80007-3. [DOI] [PubMed] [Google Scholar]
- Burns R. G., Pollard T. D. A dynein-like protein from brain. FEBS Lett. 1974 Apr 1;40(2):274–280. doi: 10.1016/0014-5793(74)80243-7. [DOI] [PubMed] [Google Scholar]
- Carlson F. D., Fraser A. B. Dynamics of F-actin and F-actin complexes. J Mol Biol. 1974 Oct 25;89(2):273–281. doi: 10.1016/0022-2836(74)90518-x. [DOI] [PubMed] [Google Scholar]
- Comly L. T. Microfilaments in Chaos carolinensis. Membrane association, distribution, and heavy meromyosin binding in the glycerinated cell. J Cell Biol. 1973 Jul;58(1):230–237. doi: 10.1083/jcb.58.1.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ebashi S., Endo M. Calcium ion and muscle contraction. Prog Biophys Mol Biol. 1968;18:123–183. doi: 10.1016/0079-6107(68)90023-0. [DOI] [PubMed] [Google Scholar]
- Eisenberg E., Weihing R. R. Effect of skeletal muscle native tropomyosin on the interaction of amoeba actin with heavy meromyosin. Nature. 1970 Dec 12;228(5276):1092–1093. doi: 10.1038/2281092a0. [DOI] [PubMed] [Google Scholar]
- Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
- Gaskin F., Kramer S. B., Cantor C. R., Adelstein R., Shelanski M. L. A dynein-like protein associated with neurotubules. FEBS Lett. 1974 Apr 1;40(2):281–286. doi: 10.1016/0014-5793(74)80244-9. [DOI] [PubMed] [Google Scholar]
- Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
- Hartshorne D. J., Mueller H. The preparation of tropomyosin and troponin from natural actomyosin. Biochim Biophys Acta. 1969 Mar;175(2):301–319. doi: 10.1016/0005-2795(69)90008-7. [DOI] [PubMed] [Google Scholar]
- Hartwig J. H., Stossel T. P. Isolation and properties of actin, myosin, and a new actinbinding protein in rabbit alveolar macrophages. J Biol Chem. 1975 Jul 25;250(14):5696–5705. [PubMed] [Google Scholar]
- KOPAC M. J. Physical properties of protoplasm. Annu Rev Physiol. 1950;12:7–26. doi: 10.1146/annurev.ph.12.030150.000255. [DOI] [PubMed] [Google Scholar]
- Kane R. E. Preparation and purification of polymerized actin from sea urchin egg extracts. J Cell Biol. 1975 Aug;66(2):305–315. doi: 10.1083/jcb.66.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kasai M. Thermodynamical aspect of G-F transformations of actin. Biochim Biophys Acta. 1969 Jun 24;180(2):399–409. doi: 10.1016/0005-2728(69)90124-8. [DOI] [PubMed] [Google Scholar]
- LANDAU J. V., ZIMMERMAN A. M., MARSLAND D. A. Temperature-pressure experiments on amoeba proteus; plasmagel structure in relation to form and movement. J Cell Physiol. 1954 Oct;44(2):211–232. doi: 10.1002/jcp.1030440206. [DOI] [PubMed] [Google Scholar]
- Maruyama K., Kaibara M., Fukada E. Rheology of F-actin. I. Network of F-actin in solution. Biochim Biophys Acta. 1974 Nov 5;371(1):20–29. doi: 10.1016/0005-2795(74)90150-0. [DOI] [PubMed] [Google Scholar]
- Pollard T. D., Eisenberg E., Korn E. D., Kielley W. W. Inhibition of Mg ++ ATPase activity of actin-activated Acanthamoeba myosin by muscle troponin-tropomyosin: implications for the mechanism of control of amoeba motility and muscle contraction. Biochem Biophys Res Commun. 1973 Apr 2;51(3):693–698. doi: 10.1016/0006-291x(73)91370-3. [DOI] [PubMed] [Google Scholar]
- Pollard T. D. Functional implications of the biochemical and structural properties of cytoplasmic contractile proteins. Soc Gen Physiol Ser. 1975;30:259–286. [PubMed] [Google Scholar]
- Pollard T. D., Ito S. Cytoplasmic filaments of Amoeba proteus. I. The role of filaments in consistency changes and movement. J Cell Biol. 1970 Aug;46(2):267–289. doi: 10.1083/jcb.46.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Korn E. D. Acanthamoeba myosin. I. Isolation from Acanthamoeba castellanii of an enzyme similar to muscle myosin. J Biol Chem. 1973 Jul 10;248(13):4682–4690. [PubMed] [Google Scholar]
- Pollard T. D., Korn E. D. Acanthamoeba myosin. II. Interaction with actin and with a new cofactor protein required for actin activation of Mg 2+ adenosine triphosphatase activity. J Biol Chem. 1973 Jul 10;248(13):4691–4697. [PubMed] [Google Scholar]
- Pollard T. D., Korn E. D. Filaments of Amoeba proteus. II. Binding of heavy meromyosin by thin filaments in motile cytoplasmic extracts. J Cell Biol. 1971 Jan;48(1):216–219. doi: 10.1083/jcb.48.1.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Thomas S. M., Niederman R. Human platelet myosin. I. Purification by a rapid method applicable to other nonmuscle cells. Anal Biochem. 1974 Jul;60(1):258–266. doi: 10.1016/0003-2697(74)90152-3. [DOI] [PubMed] [Google Scholar]
- Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
- Rees M. K., Young M. Studies on the isolation and molecular properties of homogeneous globular actin. Evidence for a single polypeptide chain structure. J Biol Chem. 1967 Oct 10;242(19):4449–4458. [PubMed] [Google Scholar]
- Stephens R. E. High-resolution preparative SDS-polyacrylamide gel electrophoresis: fluorescent visualization and electrophoretic elution-concentration of protein bands. Anal Biochem. 1975 May 12;65(1-2):369–379. doi: 10.1016/0003-2697(75)90521-7. [DOI] [PubMed] [Google Scholar]
- Stossel T. P., Hartwig J. H. Interactions between actin, myosin, and an actin-binding protein from rabbit alveolar macrophages. Alveolar macrophage myosin Mg-2+-adenosine triphosphatase requires a cofactor for activation by actin. J Biol Chem. 1975 Jul 25;250(14):5706–5712. [PubMed] [Google Scholar]
- Stossel T. P., Hartwig J. H. Interactions of actin, myosin, and a new actin-binding protein of rabbit pulmonary macrophages. II. Role in cytoplasmic movement and phagocytosis. J Cell Biol. 1976 Mar;68(3):602–619. doi: 10.1083/jcb.68.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stossel T. P., Pollard T. D. Myosin in polymorphonuclear leukocytes. J Biol Chem. 1973 Dec 10;248(23):8288–8294. [PubMed] [Google Scholar]
- THOMPSON C. M., WOLPERT L. THE ISOLATION OF MOTILE CYTOPLASM FROM AMOEBA PROTEUS. Exp Cell Res. 1963 Oct;32:156–160. doi: 10.1016/0014-4827(63)90078-8. [DOI] [PubMed] [Google Scholar]
- Taylor D. L., Condeelis J. S., Moore P. L., Allen R. D. The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm. J Cell Biol. 1973 Nov;59(2 Pt 1):378–394. doi: 10.1083/jcb.59.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weihing R. R., Korn E. D. Acanthamoeba actin. Composition of the peptide that contains 3-methylhistidine and a peptide that contains N e -methyllysine. Biochemistry. 1972 Apr 11;11(8):1538–1543. doi: 10.1021/bi00758a032. [DOI] [PubMed] [Google Scholar]
- Weihing R. R., Korn E. D. Acanthamoeba actin. Isolation and properties. Biochemistry. 1971 Feb 16;10(4):590–600. doi: 10.1021/bi00780a008. [DOI] [PubMed] [Google Scholar]