Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Mar 1;68(3):451–461. doi: 10.1083/jcb.68.3.451

Freeze-fracture studies of the thecal membranes of Gonyaulax polyedra: circadian changes in the particles of one membrane face

PMCID: PMC2109666  PMID: 1035909

Abstract

Intramembrane faces were visualized in the marine dinoflagellate Gonyaulax polyedra by the freeze-fracture technique, in order to test a prediction of a membrane model for circadian oscillations--i.e;, that membrane particle distribution and size change with time in the circadian cycle. Cells from each of four cell suspensions in continuous light (500 1x, 20-21 degrees C) were frozen, without fixation or cryoprotection, at four circadian times in a cycle. This paper reports findings concerning the membranes associated with the theca, particularly the cytoplasmic membrane and the membrane of the large peripheral vesicle. While the number and size distribution of the particles of the PF face of the cytoplasmic membrane were constant with time, those of the EF face of the peripheral vesicle doubled in number at 18 h circadian time as compared with 06 h. Particles of the 120-A size class, in particular, were more numerous at 12 and 18 h circadian time than at 00 and 06 h. While the finding does not provide definitive confirmation of the membrane hypothesis for circadian rhythms, it is consistent with this model. It is suggested that the peripheral vesicle may be the site of bioluminescence in Gonyaulax.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouck G. B., Sweeney B. M. The fine structure and ontogeny of trichocysts in marine dinoflagellates. Protoplasma. 1966;61(1):205–223. doi: 10.1007/BF01247920. [DOI] [PubMed] [Google Scholar]
  2. Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
  3. Branton D. Fracture faces of frozen membranes. Proc Natl Acad Sci U S A. 1966 May;55(5):1048–1056. doi: 10.1073/pnas.55.5.1048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bünning E., Moser I. Influence of valinomycin on circadian leaf movements of Phaseolus. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2732–2733. doi: 10.1073/pnas.69.9.2732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Engelmann W. Lithium slows down the Kalanchoe clock. Z Naturforsch B. 1972 Apr;27(4):477–477. doi: 10.1515/znb-1972-0431. [DOI] [PubMed] [Google Scholar]
  6. Fogel M., Schmitter R. E., Hastings J. W. On the physical identity of scintillons: bioluminescent particles in Gonyaulax polyedra. J Cell Sci. 1972 Jul;11(1):305–317. doi: 10.1242/jcs.11.1.305. [DOI] [PubMed] [Google Scholar]
  7. GUILLARD R. R., RYTHER J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can J Microbiol. 1962 Apr;8:229–239. doi: 10.1139/m62-029. [DOI] [PubMed] [Google Scholar]
  8. HASTINGS J. W., ASTRACHAN L., SWEENEY B. M. A persistent daily rhythm in photosynthesis. J Gen Physiol. 1961 Sep;45:69–76. doi: 10.1085/jgp.45.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Herman E. M., Sweeney B. M. Circadian rhythm of chloroplast ultrastructure in Gonyaulax polyedra, concentric organization around a central cluster of ribosomes. J Ultrastruct Res. 1975 Mar;50(3):347–354. doi: 10.1016/s0022-5320(75)80065-7. [DOI] [PubMed] [Google Scholar]
  10. Kalley J. P., Bisalputra T. Peridinium trochoideum : the fe structure of the theca as shown by freeze-etching. J Ultrastruct Res. 1970 Apr;31(1):95–108. doi: 10.1016/s0022-5320(70)90147-4. [DOI] [PubMed] [Google Scholar]
  11. Mason W. T., Fager R. S., Abrahamson E. W. Structural response of vertebrate photoreceptor membranes to light. Nature. 1974 Jan 25;247(5438):188–191. doi: 10.1038/247188a0. [DOI] [PubMed] [Google Scholar]
  12. McDonald T. F., Sachs H. G., Orr C. W., Ebert J. D. External potassium and baby hamster kidney cells: intracellular ions, ATP, growth, DNA synthesis and membrane potential. Dev Biol. 1972 May;28(1):290–303. doi: 10.1016/0012-1606(72)90145-5. [DOI] [PubMed] [Google Scholar]
  13. McMurry L., Hastings J. W. Circadian rhythms: mechanism of luciferase activity changes in Gonyaulax. Biol Bull. 1972 Aug;143(1):196–206. doi: 10.2307/1540339. [DOI] [PubMed] [Google Scholar]
  14. Njus D., Sulzman F. M., Hastings J. W. Membrane model for the circadian clock. Nature. 1974 Mar 8;248(5444):116–120. doi: 10.1038/248116a0. [DOI] [PubMed] [Google Scholar]
  15. Ojakian G. K., Satir P. Particle movements in chloroplast membranes: quantitative measurements of membrane fluidity by the freeze-fracture technique. Proc Natl Acad Sci U S A. 1974 May;71(5):2052–2056. doi: 10.1073/pnas.71.5.2052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schmitter R. E. The fine structure of Gonyaulax polyedra, a bioluminescent marine dinoflagellate. J Cell Sci. 1971 Jul;9(1):147–173. doi: 10.1242/jcs.9.1.147. [DOI] [PubMed] [Google Scholar]
  17. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  18. Sweeney B. M. A physiological model for circadian rhythms derived from the acetabularia rhythm paradoxes. Int J Chronobiol. 1974;2(1):25–33. [PubMed] [Google Scholar]
  19. Sweeney B. M. The Potassium Content of Gonyaulax polyedra and Phase Changes in the Circadian Rhythm of Stimulated Bioluminescence by Short Exposures to Ethanol and Valinomycin. Plant Physiol. 1974 Mar;53(3):337–342. doi: 10.1104/pp.53.3.337. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES