Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 May 1;69(2):507–513. doi: 10.1083/jcb.69.2.507

Topographical differences in the distribution of surface coat components and intramembrane particles. A cytochemical and freeze- fracture study in culture forms of Trypanosoma cruzi

PMCID: PMC2109674  PMID: 770483

Abstract

A regional specialization of the cell surface of T. cruzi culture forms was found at the cytostome as a localized thick surface coat rich in carbohydrate-containing components. The prominent surface coat was located over a region of the plasma membrane where intramembranous particles were exceedingly low in number. In turn, the particle-poor region was related to specialized submembrane fibrils not present under other regions of the plasma membrane. The cystostome region provides a striking example of a stable regional differentiation of the plasma membrane, involving the outer surface, the membrane interior, and the underlying cytoplasm. In addition, independence of Con A receptors, colloidal iron binding sites, and ruthenium red-stainable surface components from membrane particles was demonstrated at the flagellar membrane.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernhard W., Avrameas S. Ultrastructural visualization of cellular carbohydrate components by means of concanavalin A. Exp Cell Res. 1971 Jan;64(1):232–236. doi: 10.1016/0014-4827(71)90217-5. [DOI] [PubMed] [Google Scholar]
  2. Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
  3. CAMARGO E. P. GROWTH AND DIFFERENTIATION IN TRYPANOSOMA CRUZI. I. ORIGIN OF METACYCLIC TRYPANOSOMES IN LIQUID MEDIA. Rev Inst Med Trop Sao Paulo. 1964 May-Jun;6:93–100. [PubMed] [Google Scholar]
  4. Da Silva P. P., Martinez-Palomo A. Induced redistribution of membrane particles, anionic sites and con A receptors in Entamoeba histolytica. Nature. 1974 May 10;249(453):170–171. doi: 10.1038/249170a0. [DOI] [PubMed] [Google Scholar]
  5. Decker R. S., Friend D. S. Assembly of gap junctions during amphibian neurulation. J Cell Biol. 1974 Jul;62(1):32–47. doi: 10.1083/jcb.62.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fawcett D. W. The mammalian spermatozoon. Dev Biol. 1975 Jun;44(2):394–436. doi: 10.1016/0012-1606(75)90411-x. [DOI] [PubMed] [Google Scholar]
  7. Gasic G. J., Berwick L., Sorrentino M. Positive and negative colloidal iron as cell surface electron stains. Lab Invest. 1968 Jan;18(1):63–71. [PubMed] [Google Scholar]
  8. Luft J. H. Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec. 1971 Nov;171(3):347–368. doi: 10.1002/ar.1091710302. [DOI] [PubMed] [Google Scholar]
  9. Milder R., Deane M. P. The cytostome of Trypanosoma cruzi and T. conorhini. J Protozool. 1969 Nov;16(4):730–737. doi: 10.1111/j.1550-7408.1969.tb02335.x. [DOI] [PubMed] [Google Scholar]
  10. Nicolson G. L., Yanagimachi R. Mobility and the restriction of mobility of plasma membrane lectin-binding components. Science. 1974 Jun 21;184(4143):1294–1296. doi: 10.1126/science.184.4143.1294. [DOI] [PubMed] [Google Scholar]
  11. Pinto Da Silva P., Martinez-Palomo A. Distribution of membrane particles and gap junctions in normal and transformed 3T3 cells studied in situ, in suspension, and treated with concanavalin A. Proc Natl Acad Sci U S A. 1975 Feb;72(2):572–576. doi: 10.1073/pnas.72.2.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Silva P. P., Martínez-Palomo A., Gonzalez-Robles A. Membrane structure and surface coat of Entamoeba histolytica. Topochemistry and dynamics of the cell surface: cap formation and microexudate. J Cell Biol. 1975 Mar;64(3):538–550. doi: 10.1083/jcb.64.3.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  14. Singer S. J. The molecular organization of membranes. Annu Rev Biochem. 1974;43(0):805–833. doi: 10.1146/annurev.bi.43.070174.004105. [DOI] [PubMed] [Google Scholar]
  15. Smith D. S., Njogu A. R., Cayer M., Järlfors U. Observations on freeze-fractured membranes of a Trypanosome. Tissue Cell. 1974;6(2):223–241. doi: 10.1016/0040-8166(74)90050-0. [DOI] [PubMed] [Google Scholar]
  16. Vickerman K. On the surface coat and flagellar adhesion in trypanosomes. J Cell Sci. 1969 Jul;5(1):163–193. doi: 10.1242/jcs.5.1.163. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES