Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 May 1;69(2):407–414. doi: 10.1083/jcb.69.2.407

Effect of cytochalasin B on the adhesion of mouse peritoneal macrophages

PMCID: PMC2109683  PMID: 816801

Abstract

The adhesion of normal mouse macrophages to glass surfaces was reduced by nontoxic levels (1-50 mug/ml) of cytochalasin B in combination with a centrifugal force (1,000-8,000 g). Macrophages nonspecifically activated by Corynebacterium acnes were also detached by this treatment, but less effectively. The effects of cytochalasin B treatment on these cells were shown to be reversible. After detachment, the cells reattached to glass, appeared morphologically normal, and behaved like untreated cells as judged by adhesion, acid phosphatase levels, and phagocytosis. The effect of cytochalasin B on several parameters of phagocytosis by normal macrophages was also examined. The results demonstrate that cytochalasin B can be used to detach macrophages from surfaces and suggest a functional relationship between phagocytosis and macrophage adhesion to surfaces. Furthermore, the effect of cytochalasin B on adhesion of phagocytic cells provides a probe for further investigation of the adhesion of cells to surfaces.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison A. C., Davies P., De Petris S. Role of contractile microfilaments in macrophage movement and endocytosis. Nat New Biol. 1971 Aug 4;232(31):153–155. doi: 10.1038/newbio232153a0. [DOI] [PubMed] [Google Scholar]
  2. Axline S. G., Reaven E. P. Inhibition of phagocytosis and plasma membrane mobility of the cultivated macrophage by cytochalasin B. Role of subplasmalemmal microfilaments. J Cell Biol. 1974 Sep;62(3):647–659. doi: 10.1083/jcb.62.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brunk U., Ericsson J. L., Pontén J., Westermark B. Specialization of cell surfaces in contact-inhibited human glia-like cells in vitro. Exp Cell Res. 1971 Aug;67(2):407–415. doi: 10.1016/0014-4827(71)90426-5. [DOI] [PubMed] [Google Scholar]
  4. Carter S. B. Effects of cytochalasins on mammalian cells. Nature. 1967 Jan 21;213(5073):261–264. doi: 10.1038/213261a0. [DOI] [PubMed] [Google Scholar]
  5. Cornell R. Cell-substrate adhesion during cell culture. An ultrastructural study. Exp Cell Res. 1969 Dec;58(2):289–295. doi: 10.1016/0014-4827(69)90507-2. [DOI] [PubMed] [Google Scholar]
  6. Culp L. A. Substrate-attached glycoproteins mediating adhesion of normal and virus-transformed mouse fibroblasts. J Cell Biol. 1974 Oct;63(1):71–83. doi: 10.1083/jcb.63.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldman R. D., Pollack R., Hopkins N. H. Preservation of normal behavior by enucleated cells in culture. Proc Natl Acad Sci U S A. 1973 Mar;70(3):750–754. doi: 10.1073/pnas.70.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldman R. D. The effects of cytochalasin B on the microfilaments of baby hamster kidney (BHK-21) cells. J Cell Biol. 1972 Feb;52(2):246–254. doi: 10.1083/jcb.52.2.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Klaus G. G. Cytochalasin B. Dissociation of pinocytosis and phagocytosis by peritoneal macrophages. Exp Cell Res. 1973 Apr;79(1):73–78. doi: 10.1016/0014-4827(73)90490-4. [DOI] [PubMed] [Google Scholar]
  10. Kletzien R. F., Perdue J. F. The inhibition of sugar transport in chick embryo fibroblasts by cytochalasin B. Evidence for a membrane-specific effect. J Biol Chem. 1973 Jan 25;248(2):711–719. [PubMed] [Google Scholar]
  11. Koch G., Oppermann H. Sensitization of HeLa cells for viral RNA infection by cytochalasin B. Virology. 1975 Feb;63(2):395–403. doi: 10.1016/0042-6822(75)90312-8. [DOI] [PubMed] [Google Scholar]
  12. Mackaness G. B. The monocyte in cellular immunity. Semin Hematol. 1970 Apr;7(2):172–184. [PubMed] [Google Scholar]
  13. Malawista S. E., Gee J. B., Bensch K. G. Cytochalasin B reversibly inhibits phagocytosis: functional, metabolic, and ultrastructural effects in human blood leukocytes and rabbit alveolar macrophages. Yale J Biol Med. 1971 Dec;44(3):286–300. [PMC free article] [PubMed] [Google Scholar]
  14. Miranda A. F., Godman G. C., Deitch A. D., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. I. Early events. J Cell Biol. 1974 May;61(2):481–500. doi: 10.1083/jcb.61.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Miranda A. F., Godman G. C., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. II. Cortex and microfilaments. J Cell Biol. 1974 Aug;62(2):406–423. doi: 10.1083/jcb.62.2.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. North R. J. Endocytosis. Semin Hematol. 1970 Apr;7(2):161–171. [PubMed] [Google Scholar]
  17. Prescott D. M., Myerson D., Wallace J. Enucleation of mammalian cells with cytochalasin B. Exp Cell Res. 1972;71(2):480–485. doi: 10.1016/0014-4827(72)90322-9. [DOI] [PubMed] [Google Scholar]
  18. Rabinovitch M., Destefano M. J. Macrophage spreading in vitro. III. The effect of metabolic inhibitors, anesthetics and other drugs on spreading induced by subtilisin. Exp Cell Res. 1974 Sep;88(1):153–162. doi: 10.1016/0014-4827(74)90629-6. [DOI] [PubMed] [Google Scholar]
  19. Reaven E. P., Axline S. G. Subplasmalemmal microfilaments and microtubules in resting and phagocytizing cultivated macrophages. J Cell Biol. 1973 Oct;59(1):12–27. doi: 10.1083/jcb.59.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shields R., Pollock K. The adhesion of BHK and PyBHK cells to the substratum. Cell. 1974 Sep;3(1):31–38. doi: 10.1016/0092-8674(74)90034-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES