Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 May 1;69(2):275–286. doi: 10.1083/jcb.69.2.275

Filopodia of spreading 3T3 cells. Do they have a substrate-exploring function?

PMCID: PMC2109684  PMID: 1262391

Abstract

Freshly plated 3T3 cells send out radial projections or filopodia. We observed cells which happended to settle on glass near the borderline of a gold-plated area. When some of the filopodia contacted the gold- plated area and others the glass substratum and remained attached for a few minutes, lamellipodia then extended preferentially toward the gold- plated area. 1-2 h later, most of the cells were found in the gold- plated area. When the filopodia of a spreading 3T3 cell contacted another already spread 3T3 cell and also the glass substratum, the first lamellipodia extended preferentially towards the glass. These observations suggest a directionally differentiated extension of lamellipodia after the filopodia of a spreading 3T3 cell have contacted different substrates in their environment. Before filopodia contact a substrate, they perform a rapid "scanning" motion. Therefore, we suggest that the filopodia of a spreading 3T3 cell serve as organs which explore the nonfluid environment and react to a certain quality of the substrate that is presently unknown. Subsequently, they mediate the extension of lamellipodia into the direction in which this quality is found. The described phenomena are reversibly inhibited by Cytochalasin B at concentrations above 5 mug/ml although filopodia are produced.

Full Text

The Full Text of this article is available as a PDF (3.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABERCROMBIE M., AMBROSE E. J. The surface properties of cancer cells: a review. Cancer Res. 1962 Jun;22:525–548. [PubMed] [Google Scholar]
  2. ABERCROMBIE M., HEAYSMAN J. E. Observations on the social behaviour of cells in tissue culture. II. Monolayering of fibroblasts. Exp Cell Res. 1954 May;6(2):293–306. doi: 10.1016/0014-4827(54)90176-7. [DOI] [PubMed] [Google Scholar]
  3. Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. I. Movements of the leading edge. Exp Cell Res. 1970 Mar;59(3):393–398. doi: 10.1016/0014-4827(70)90646-4. [DOI] [PubMed] [Google Scholar]
  4. Ben-Shaul Y., Moscona A. A. Scanning electron microscopy of aggregating embryonic neural retina cells. Exp Cell Res. 1975 Oct 1;95(1):191–204. doi: 10.1016/0014-4827(75)90624-2. [DOI] [PubMed] [Google Scholar]
  5. Bray D. Model for membrane movements in the neural growth cone. Nature. 1973 Jul 13;244(5411):93–96. doi: 10.1038/244093a0. [DOI] [PubMed] [Google Scholar]
  6. Carter S. B. Effects of cytochalasins on mammalian cells. Nature. 1967 Jan 21;213(5073):261–264. doi: 10.1038/213261a0. [DOI] [PubMed] [Google Scholar]
  7. Carter S. B. Haptotactic islands: a method of confining single cells to study individual cell reactions and clone formation. Exp Cell Res. 1967 Oct;48(1):189–193. doi: 10.1016/0014-4827(67)90298-4. [DOI] [PubMed] [Google Scholar]
  8. Carter S. B. Haptotaxis and the mechanism of cell motility. Nature. 1967 Jan 21;213(5073):256–260. doi: 10.1038/213256a0. [DOI] [PubMed] [Google Scholar]
  9. Cornell R. In situ observations on the surface projections of mouse embryo cell strains. Exp Cell Res. 1969 Sep;57(1):86–94. doi: 10.1016/0014-4827(69)90370-x. [DOI] [PubMed] [Google Scholar]
  10. Dunn G. A. Extension of nerve fibres, their mutual interaction and direction of growth in tissue culture. Ciba Found Symp. 1973;14:211–232. doi: 10.1002/9780470719978.ch10. [DOI] [PubMed] [Google Scholar]
  11. GEY G. O. Some aspects of the constitution and behavior of normal and malignant cells maintained in continuous culture. Harvey Lect. 1954;50:154–229. [PubMed] [Google Scholar]
  12. GUSTAFSON T., WOLPERT L. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchvme cells in normal and vegetalized larvae. Exp Cell Res. 1961 Jun;24:64–79. doi: 10.1016/0014-4827(61)90248-8. [DOI] [PubMed] [Google Scholar]
  13. Godman G. C., Miranda A. F., Deitch A. D., Tanenbaum S. W. Action of cytochalasin D on cells of established lines. III. Zeiosis and movements at the cell surface. J Cell Biol. 1975 Mar;64(3):644–667. doi: 10.1083/jcb.64.3.644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harris A. Behavior of cultured cells on substrata of variable adhesiveness. Exp Cell Res. 1973 Mar 15;77(1):285–297. doi: 10.1016/0014-4827(73)90579-x. [DOI] [PubMed] [Google Scholar]
  15. Holtzer H., Croop J., Dienstman S., Ishikawa H., Somlyo A. P. Effects of cytochaslasin B and colcemide on myogenic cultures. Proc Natl Acad Sci U S A. 1975 Feb;72(2):513–517. doi: 10.1073/pnas.72.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Partridge T., Davies P. S. Limpet haemocytes. II. The role of spikes in locomotion and spreading. J Cell Sci. 1974 Mar;14(2):319–330. doi: 10.1242/jcs.14.2.319. [DOI] [PubMed] [Google Scholar]
  17. Pollack R., Risser R., Conlon S., Rifkin D. Plasminogen activator production accompanies loss of anchorage regulation in transformation of primary rat embryo cells by simian virus 40. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4792–4796. doi: 10.1073/pnas.71.12.4792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Revel J. P., Hoch P., Ho D. Adhesion of culture cells to their substratum. Exp Cell Res. 1974 Mar 15;84(1):207–218. doi: 10.1016/0014-4827(74)90398-x. [DOI] [PubMed] [Google Scholar]
  19. Sanger J. W., Holtzer H. Cytochalasin B: effects on cell morphology, cell adhesion, and mucopolysaccharide synthesis (cultured cells-contractile microfilaments-glycoproteins-embryonic cells-sorting-out). Proc Natl Acad Sci U S A. 1972 Jan;69(1):253–257. doi: 10.1073/pnas.69.1.253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stoker M. Abortive transformation by polyoma virus. Nature. 1968 Apr 20;218(5138):234–238. doi: 10.1038/218234a0. [DOI] [PubMed] [Google Scholar]
  21. TAYLOR A. C., ROBBINS E. Observations on microextensions from the surface of isolated vertebrate cells. Dev Biol. 1963 Mar;6:660–673. doi: 10.1016/0012-1606(63)90150-7. [DOI] [PubMed] [Google Scholar]
  22. Trelstad R. L., Hay E. D., Revel J. D. Cell contact during early morphogenesis in the chick embryo. Dev Biol. 1967 Jul;16(1):78–106. doi: 10.1016/0012-1606(67)90018-8. [DOI] [PubMed] [Google Scholar]
  23. Trinkaus J. P., Betchaku T., Krulikowski L. S. Local inhibition of ruffling during contact inhibition of cell movement. Exp Cell Res. 1971 Feb;64(2):291–300. doi: 10.1016/0014-4827(71)90079-6. [DOI] [PubMed] [Google Scholar]
  24. Trinkaus J. P. Surface activity and locomotion of Fundulus deep cells during blastula and gastrula stages. Dev Biol. 1973 Jan;30(1):69–103. doi: 10.1016/0012-1606(73)90049-3. [DOI] [PubMed] [Google Scholar]
  25. Wessells N. K., Spooner B. S., Ludueña M. A. Surface movements, microfilaments and cell locomotion. Ciba Found Symp. 1973;14:53–82. doi: 10.1002/9780470719978.ch4. [DOI] [PubMed] [Google Scholar]
  26. Willingham M. C., Pastan I. Cyclic AMP modulates microvillus formation and agglutinability in transformed and normal mouse fibroblasts. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1263–1267. doi: 10.1073/pnas.72.4.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES