Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 May 1;69(2):429–442. doi: 10.1083/jcb.69.2.429

Divalent cation affinity sites in Paramecium aurelia

PMCID: PMC2109692  PMID: 1262398

Abstract

Sites with high calcium affinity in Paramecium aurelia were identified by high calcium (5 mM) fixation and electron microscope methods. Electron-opaque deposits were observed on the cytoplasmic side of surface membranes, particularly at the basal regions of cilia and trichocyst-pellicle fusion sites. Deposits were also observed on some smooth cytomembranes, within the axoneme of cilia, and on basal bodies. The divalent cations, Mg2+, Mn2+, Sr2+, Ni2+, Ba2+, and Zn2+, could be substituted for Ca2+ in the procedure. Deposits were larger with 5 mM Sr2+. Ba2+, and Mn2+ at ciliary transverse plates and the terminal plate of basal bodies. Microprobe analysis showed that Ca and C1 were concentrated within deposits. In some analyses, S and P were detected in deposits. Also, microprobe analysis of 5 mM Mn2+-fixed P. aurelia showed that those deposits were enriched in Mn and C1 and sometimes enriched in P. Deposits were seen only when the ciliates were actively swimming at the time of fixation. Locomotory mutants having defective membrane Ca-gating mechanisms and ciliates fixed while exhibiting ciliary reversal showed no obvious differences in deposition pattern and intensity. Possible correlations between electron-opaque deposits and the locations of intramembranous particles seen by freeze-fracture studied, as well as sites where fibrillar material associate with membranes are considered. The possibility that the action sites of calcium and other divalent cations were identified is discussed.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. Evidence for firm linkages between microtubules and membrane-bounded vesicles. J Cell Biol. 1975 Feb;64(2):497–503. doi: 10.1083/jcb.64.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen R. D. Fine structure of membranous and microfibrillar systems in the cortex of Paramecium caudatum. J Cell Biol. 1971 Apr;49(1):1–20. doi: 10.1083/jcb.49.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen R. D. Fine structure, reconstruction and possible functions of components of the cortex of Tetrahymena pyriformis. J Protozool. 1967 Nov;14(4):553–565. doi: 10.1111/j.1550-7408.1967.tb02042.x. [DOI] [PubMed] [Google Scholar]
  4. Allen R. D. Food vacuole membrane growth with microtubule-associated membrane transport in Paramecium. J Cell Biol. 1974 Dec;63(3):904–922. doi: 10.1083/jcb.63.3.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Allen R. D. The morphogenesis of basal bodies and accessory structures of the cortex of the ciliated protozoan Tetrahymena pyriformis. J Cell Biol. 1969 Mar;40(3):716–733. doi: 10.1083/jcb.40.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyne A. F., Bohan T. P., Williams T. H. Effects of calcium-containing fixation solutions on cholinergic synaptic vesicles. J Cell Biol. 1974 Dec;63(3):780–795. doi: 10.1083/jcb.63.3.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Douglas W. W. Involvement of calcium in exocytosis and the exocytosis--vesiculation sequence. Biochem Soc Symp. 1974;(39):1–28. [PubMed] [Google Scholar]
  8. Eckert R. Bioelectric control of ciliary activity. Science. 1972 May 5;176(4034):473–481. doi: 10.1126/science.176.4034.473. [DOI] [PubMed] [Google Scholar]
  9. Feagler J. R., Tillack T. W., Chaplin D. D., Majerus P. W. The effects of thrombin on phytohemagglutinin receptor sites in human platelets. J Cell Biol. 1974 Mar;60(3):541–553. doi: 10.1083/jcb.60.3.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Franzini-Armstron C. Freeze fracture of skeletal muscle from the Tarantula spider. Structural differentiations of sarcoplasmic reticulum and transverse tubular system membranes. J Cell Biol. 1974 May;61(2):501–513. doi: 10.1083/jcb.61.2.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gambetti P., Erulkar S. E., Somlyo A. P., Gonatas N. K. Calcium-containing structures in vertebrate glial cells. Ultrastructural and microprobe analysis. J Cell Biol. 1975 Feb;64(2):322–330. doi: 10.1083/jcb.64.2.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gilula N. B., Reeves O. R., Steinbach A. Metabolic coupling, ionic coupling and cell contacts. Nature. 1972 Feb 4;235(5336):262–265. doi: 10.1038/235262a0. [DOI] [PubMed] [Google Scholar]
  13. Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hufnagel L. A. Cortical ultrastructure of Paramecium aurelia. Studies on isolated pellicles. J Cell Biol. 1969 Mar;40(3):779–801. doi: 10.1083/jcb.40.3.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kung C., Eckert R. Genetic modification of electric properties in an excitable membrane (paramecium-calcium conductance-electrophysiological measurements-membrane mutant). Proc Natl Acad Sci U S A. 1972 Jan;69(1):93–97. doi: 10.1073/pnas.69.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kung C., Naito Y. Calcium-induced ciliary reversal in the extracted models of "Pawn", a behavioral mutant of Paramecium. Science. 1973 Jan 12;179(4069):195–196. doi: 10.1126/science.179.4069.195. [DOI] [PubMed] [Google Scholar]
  17. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McNutt N. S., Weinstein R. S. The ultrastructure of the nexus. A correlated thin-section and freeze-cleave study. J Cell Biol. 1970 Dec;47(3):666–688. doi: 10.1083/jcb.47.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Naito Y., Kaneko H. Reactivated triton-extracted models o paramecium: modification of ciliary movement by calcium ions. Science. 1972 May 5;176(4034):523–524. doi: 10.1126/science.176.4034.523. [DOI] [PubMed] [Google Scholar]
  20. Oschman J. L., Hall T. A., Peters P. D., Wall B. J. Association of calcium with membranes of squid giant axon: ultrastructure and microprobe analysis. J Cell Biol. 1974 Apr;61(1):156–165. doi: 10.1083/jcb.61.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Oschman J. L., Wall B. J. Calcium binding to intestinal membranes. J Cell Biol. 1972 Oct;55(1):58–73. doi: 10.1083/jcb.55.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Plattner H. Ciliary granule plaques: membrane-intercalated particle aggregates associated with Ca2+-binding sites in paramecium. J Cell Sci. 1975 Jul;18(2):257–269. doi: 10.1242/jcs.18.2.257. [DOI] [PubMed] [Google Scholar]
  23. Plattner H., Miller F., Bachmann L. Membrane specializations in the form of regular membrane-to-membrane attachment sites in Paramecium. A correlated freeze-etching and ultrathin-sectioning analysis. J Cell Sci. 1973 Nov;13(3):687–719. doi: 10.1242/jcs.13.3.687. [DOI] [PubMed] [Google Scholar]
  24. Politoff A. L., Rose S., Pappas G. D. The calcium binding sites of synaptic vesicles of the frog sartorius neuromuscular junction. J Cell Biol. 1974 Jun;61(3):818–823. doi: 10.1083/jcb.61.3.818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Revel J. P., Yee A. G., Hudspeth A. J. Gap junctions between electrotonically coupled cells in tissue culture and in brown fat. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2924–2927. doi: 10.1073/pnas.68.12.2924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Satir B., Schooley C., Satir P. Membrane fusion in a model system. Mucocyst secretion in Tetrahymena. J Cell Biol. 1973 Jan;56(1):153–176. doi: 10.1083/jcb.56.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sattler C. A., Staehelin L. A. Ciliary membrane differentiations in Tetrahymena pyriformis. Tetrahymena has four types of cilia. J Cell Biol. 1974 Aug;62(2):473–490. doi: 10.1083/jcb.62.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Skaer R. J., Peters P. D., Emmines J. P. The localization of calcium and phosphorus in human platelets. J Cell Sci. 1974 Aug;15(3):679–682. doi: 10.1242/jcs.15.3.679. [DOI] [PubMed] [Google Scholar]
  30. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  31. WATSON M. R., HOPKINS J. M. Isolated cilia from Tetrahymena pyriformis. Exp Cell Res. 1962 Nov;28:280–295. doi: 10.1016/0014-4827(62)90284-7. [DOI] [PubMed] [Google Scholar]
  32. Zucker-Franklin D. The submembranous fibrils of human blood platelets. J Cell Biol. 1970 Oct;47(1):293–299. doi: 10.1083/jcb.47.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES