Abstract
A specific exocytic process, the discharge of spindle trichocysts of paramecium caudatum was examined by means of the electron microscope. This exocytosis is induced by an electric shock simultaneously in nearly all of the trichocysts (ca. 6,000-8,0000 of a single cell. Single paramecia were subjected to the shock and then fixed at defined times after the shock so that the temporal sequence of the pattern of changes of the trichocyst membranes after exocytosis could be studied. The trichocyst vacuoles fuse with the plasma membrane only for that length of time required for expulsion to take place. After exocytosis, the membrane of the vacuole does not become incorporated into the plasma membrane; rather, the collapsed vacuole is pinched off and breaks up within the cytoplasm. The membrane vesiculates into small units which can no longer be distinguished from vesicles of the same dimensions that exist normally within the cell's cytoplasm. the entire process is completed within 5-10 min. These results differ from the incorporation of mucocyst membranes into the plasma membrane as proposed for tetrahymena.
Full Text
The Full Text of this article is available as a PDF (5.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. D. Fine structure of membranous and microfibrillar systems in the cortex of Paramecium caudatum. J Cell Biol. 1971 Apr;49(1):1–20. doi: 10.1083/jcb.49.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen R. D. Fine structure, reconstruction and possible functions of components of the cortex of Tetrahymena pyriformis. J Protozool. 1967 Nov;14(4):553–565. doi: 10.1111/j.1550-7408.1967.tb02042.x. [DOI] [PubMed] [Google Scholar]
- Allen R. D. Food vacuole membrane growth with microtubule-associated membrane transport in Paramecium. J Cell Biol. 1974 Dec;63(3):904–922. doi: 10.1083/jcb.63.3.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen R. D., Wolf R. W. The cytoproct of Paramecium caudatum: structure and function, microtubules, and fate of food vacuole membranes. J Cell Sci. 1974 May;14(3):611–631. doi: 10.1242/jcs.14.3.611. [DOI] [PubMed] [Google Scholar]
- Bannister L. H. The structure of trichocysts in Paramecium caudatum. J Cell Sci. 1972 Nov;11(3):899–929. doi: 10.1242/jcs.11.3.899. [DOI] [PubMed] [Google Scholar]
- ELLIOTT A. M., BAK I. J. THE CONTRACTILE VACUOLE AND RELATED STRUCTURES IN TETRAHYMENA PYRIFORMIS. J Protozool. 1964 May;11:250–261. doi: 10.1111/j.1550-7408.1964.tb01752.x. [DOI] [PubMed] [Google Scholar]
- Geuze J. J., Poort C. Cell membrane resorption in the rat exocrine pancreas cell after in vivo stimulation of the secretion, as studied by in vitro incubation with extracellular space markers. J Cell Biol. 1973 Apr;57(1):159–174. doi: 10.1083/jcb.57.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heuser J. E., Reese T. S., Landis D. M. Functional changes in frog neuromuscular junctions studied with freeze-fracture. J Neurocytol. 1974 Mar;3(1):109–131. doi: 10.1007/BF01111936. [DOI] [PubMed] [Google Scholar]
- Jamieson J. D., Palade G. E. Synthesis, intracellular transport, and discharge of secretory proteins in stimulated pancreatic exocrine cells. J Cell Biol. 1971 Jul;50(1):135–158. doi: 10.1083/jcb.50.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
- Plattner H. Intramembraneous changes on cationophore-triggered exocytosis in Paramecium. Nature. 1974 Dec 20;252(5485):722–724. doi: 10.1038/252722a0. [DOI] [PubMed] [Google Scholar]
- Plattner H., Miller F., Bachmann L. Membrane specializations in the form of regular membrane-to-membrane attachment sites in Paramecium. A correlated freeze-etching and ultrathin-sectioning analysis. J Cell Sci. 1973 Nov;13(3):687–719. doi: 10.1242/jcs.13.3.687. [DOI] [PubMed] [Google Scholar]
- Poste G., Allison A. C. Membrane fusion. Biochim Biophys Acta. 1973 Dec 28;300(4):421–465. doi: 10.1016/0304-4157(73)90015-4. [DOI] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rhodin J. A. The ciliated cell. Ultrastructure and function of the human tracheal mucosa. Am Rev Respir Dis. 1966 Mar;93(3 Suppl):1–15. doi: 10.1164/arrd.1966.93.3P2.1. [DOI] [PubMed] [Google Scholar]
- SCHNEIDER L. ELEKTRONENMIKROSKOPISCHE UNTERSUCHUNGEN AN DEN ERNAEHRUNGSORGANELLEN VON PARAMECIUM II. DIE NAHRUNGSVAKUOLEN UND DIE CYTOPYGE. Z Zellforsch Mikrosk Anat. 1964 Mar 5;62:225–245. [PubMed] [Google Scholar]
- Satir B. Membrane events during the secretory process. Symp Soc Exp Biol. 1974;(28):399–418. [PubMed] [Google Scholar]
- Satir B. Ultrastructural aspects of membrane fusion. J Supramol Struct. 1974;2(5-6):529–537. doi: 10.1002/jss.400020503. [DOI] [PubMed] [Google Scholar]
- WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YUSA A. AN ELECTRON MICROSCOPE STUDY ON REGENERATION OF TRICHOCYSTS IN PARAMECIUM CAUDATUM. J Protozool. 1963 Aug;10:253–262. doi: 10.1111/j.1550-7408.1963.tb01673.x. [DOI] [PubMed] [Google Scholar]
- YUSA A. FINE STRUCTURE OF DEVELOPING AND MATURE TRICHOCYSTS IN FRONTONIA VESICULOSA. J Protozool. 1965 Feb;12:51–60. doi: 10.1111/j.1550-7408.1965.tb01811.x. [DOI] [PubMed] [Google Scholar]
