Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Jun 1;69(3):669–685. doi: 10.1083/jcb.69.3.669

Hormonal regulation of gap junction differentiation

PMCID: PMC2109697  PMID: 1083855

Abstract

Thin-section, tracer, and freeze-cleave experiments on hypophysectomized Rana pipiens larvae reveal that gap junctions form between differentiating ependymoglial cells in response to thyroid hormone. These junctions assemble in large particle-free areas of the plasma membrane known as formation plaques. Between 20 and 40 h after hormone application, formation plaque area increases approximately 26- fold while gap junction area rises about 20-fold. The differentiation of these junctions requires the synthesis of new protein and probably RNA as well. On the basis of inhibitor experiments, it can be reported that formation plaques develop at about 16-20 h after hormone treatment and stages in the construction of gap junctions appear 4-8 h later. These studies suggest that gap junction subunits are synthesized and inserted into formation plaque membrane during the differentiation of the anuran ependymoglial cells.

Full Text

The Full Text of this article is available as a PDF (5.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini D. F., Anderson E. Structural modifications of lutein cell gap junctions during pregnancy in the rat and the mouse. Anat Rec. 1975 Feb;181(2):171–194. doi: 10.1002/ar.1091810203. [DOI] [PubMed] [Google Scholar]
  2. Balsamo J., Lilien J. Embryonic cell aggregation: kinetics and specificity of binding of enhancing factors. Proc Natl Acad Sci U S A. 1974 Mar;71(3):727–731. doi: 10.1073/pnas.71.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benedetti E. L., Dunia I., Bloemendal H. Development of junctions during differentiation of lens fibers. Proc Natl Acad Sci U S A. 1974 Dec;71(12):5073–5077. doi: 10.1073/pnas.71.12.5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett M. V. Function of electrotonic junctions in embryonic and adult tissues. Fed Proc. 1973 Jan;32(1):65–75. [PubMed] [Google Scholar]
  5. Cohen P. P. Biochemical differentiation during amphibian metamorphosis. Science. 1970 May 1;168(3931):533–543. doi: 10.1126/science.168.3931.533. [DOI] [PubMed] [Google Scholar]
  6. DeHaan R. L., Sachs H. G. Cell coupling in developing systems: the heart-cell paradigm. Curr Top Dev Biol. 1972;7:193–228. doi: 10.1016/s0070-2153(08)60072-1. [DOI] [PubMed] [Google Scholar]
  7. FLECK A., MUNRO H. N. The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation. Biochim Biophys Acta. 1962 May 14;55:571–583. doi: 10.1016/0006-3002(62)90836-3. [DOI] [PubMed] [Google Scholar]
  8. Goodenough D. A. Bulk isolation of mouse hepatocyte gap junctions. Characterization of the principal protein, connexin. J Cell Biol. 1974 May;61(2):557–563. doi: 10.1083/jcb.61.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goodenough D. A., Gilula N. B. The splitting of hepatocyte gap junctions and zonulae occludentes with hypertonic disaccharides. J Cell Biol. 1974 Jun;61(3):575–590. doi: 10.1083/jcb.61.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goodenough D. A., Stoeckenius W. The isolation of mouse hepatocyte gap junctions. Preliminary chemical characterization and x-ray diffraction. J Cell Biol. 1972 Sep;54(3):646–656. doi: 10.1083/jcb.54.3.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnson R. G., Herman W. S., Preus D. M. Homocellular and heterocellular gap junctions in Limulus: a thin-section and freeze-fracture study. J Ultrastruct Res. 1973 May;43(3):298–312. doi: 10.1016/s0022-5320(73)80040-1. [DOI] [PubMed] [Google Scholar]
  12. Johnson R. G., Sheridan J. D. Junctions between cancer cells in culture: ultrastructure and permeability. Science. 1971 Nov 12;174(4010):717–719. doi: 10.1126/science.174.4010.717. [DOI] [PubMed] [Google Scholar]
  13. Johnson R., Hammer M., Sheridan J., Revel J. P. Gap junction formation between reaggregated Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4536–4540. doi: 10.1073/pnas.71.11.4536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lilien J. E. Specific enhancement of cell aggregation in vitro. Dev Biol. 1968 Jun;17(6):657–678. doi: 10.1016/0012-1606(68)90012-2. [DOI] [PubMed] [Google Scholar]
  16. Loewenstein W. R. Cell surface membranes in close contact. Role of calcium and magnesium ions. J Colloid Interface Sci. 1967 Sep;25(1):34–46. doi: 10.1016/0021-9797(67)90007-0. [DOI] [PubMed] [Google Scholar]
  17. MOSCONA M. H., MOSCONA A. A. INHIBITION OF ADHESIVENESS AND AGGREGATION OF DISSOCIATED CELLS BY INHIBITORS OF PROTEIN AND RNA SYNTHESIS. Science. 1963 Nov 22;142(3595):1070–1071. doi: 10.1126/science.142.3595.1070. [DOI] [PubMed] [Google Scholar]
  18. McClay D. R., Baker S. R. A kinetic study of embryonic cell adhesion. Dev Biol. 1975 Mar;43(1):109–122. doi: 10.1016/0012-1606(75)90135-9. [DOI] [PubMed] [Google Scholar]
  19. McKenna O. C., Rosenbluth J. Characterization of an unusual catecholamine-containing cell type in the toad hypothalamus. A correlated ultrastructural and fluorescence histochemical study. J Cell Biol. 1971 Mar;48(3):650–672. doi: 10.1083/jcb.48.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McKenna O. C., Rosenbluth J. Ontogenetic studies of a catecholamine-containing nucleus of the toad hypothalamus relation to metamorphosis. Exp Neurol. 1975 Mar;46(3):496–505. doi: 10.1016/0014-4886(75)90121-1. [DOI] [PubMed] [Google Scholar]
  21. McNutt N. S., Weinstein R. S. Membrane ultrastructure at mammalian intercellular junctions. Prog Biophys Mol Biol. 1973;26:45–101. doi: 10.1016/0079-6107(73)90017-5. [DOI] [PubMed] [Google Scholar]
  22. Moscona M. H., Moscona A. A. Inhibition of cell aggregation in vitro by puromycin. Exp Cell Res. 1966 Mar;41(3):703–706. doi: 10.1016/s0014-4827(66)80127-1. [DOI] [PubMed] [Google Scholar]
  23. Rash J. E., Fambrough D. Ultrastructural and electrophysiological correlates of cell coupling and cytoplasmic fusion during myogenesis in vitro. Dev Biol. 1973 Jan;30(1):166–186. doi: 10.1016/0012-1606(73)90055-9. [DOI] [PubMed] [Google Scholar]
  24. Rash J. E., Staehelin L. A. Freeze-cleave demonstration of gap junctions between skeletal myogenic cells in vivo. Dev Biol. 1974 Feb;36(2):455–461. doi: 10.1016/0012-1606(74)90066-9. [DOI] [PubMed] [Google Scholar]
  25. Revel J. P., Yip P., Chang L. L. Cell junctions in the early chick embryo--a freeze etch study. Dev Biol. 1973 Dec;35(2):302–317. doi: 10.1016/0012-1606(73)90026-2. [DOI] [PubMed] [Google Scholar]
  26. Ryffel G., Weber R. Changes in the pattern of RNA synthesis in different tissues of Xenopus larvae during induced metamorphosis. Exp Cell Res. 1973 Mar 15;77(1):79–88. doi: 10.1016/0014-4827(73)90555-7. [DOI] [PubMed] [Google Scholar]
  27. Ryffel G., Weber R. Kennzeichnung der RNS aus verschiedenen Organen von Xenopuslarven und ihre Beeinflussung durch Thyroxin. Rev Suisse Zool. 1971 Dec;78(3):639–650. [PubMed] [Google Scholar]
  28. Shimada Y., Moscona A. A., Fischman D. A. Scanning electron microscopy of cell aggregation: cardiac and mixed retina-cardiac cell suspensions. Dev Biol. 1974 Feb;36(2):428–446. doi: 10.1016/0012-1606(74)90063-3. [DOI] [PubMed] [Google Scholar]
  29. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  30. Singer S. J. The molecular organization of membranes. Annu Rev Biochem. 1974;43(0):805–833. doi: 10.1146/annurev.bi.43.070174.004105. [DOI] [PubMed] [Google Scholar]
  31. Zampighi G., Robertson J. D. Fine structure of the synaptic discs separated from the goldfish medulla oblongata. J Cell Biol. 1973 Jan;56(1):92–105. doi: 10.1083/jcb.56.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES