Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Jun 1;69(3):647–658. doi: 10.1083/jcb.69.3.647

Changes in number, mobility, and topographical distribution of lectin receptors during maturation of chick erythroid cells

PMCID: PMC2109702  PMID: 1270514

Abstract

Plant lectins have been used to probe changes in cell surface characteristics that accompny differentiation in a complete series of chick erythroid cells. Dramatic differences in lectin receptor mobility were observed between the most immature cells of the series, the proerythroblasts, and cells at the next stage of maturation, the erythroblasts. Both concanavalin A and Ricinus communis agglutinin form caps on proerythroblasts, whereas they develop a patchy distribution on erythroblasts. Erythroid cells at later developmental stages show a homogeneous distribution of surface-bound R. communis agglutinin. Concanavalin A also shows a uniform distribution on the cell periphery, but appears to be concentrated in a ring above the perinuclear region of the cell. In addition to changes in mobility of lectin receptors, a large reduction (50-70%) in the number of lectin receptors per cell accompanies maturation of proerythroblasts to erythroblasts. Pretreatment of the cells with neuraminidase results in enhanced binding of R. communis agglutinin to proerythroblasts. The number of additional R. communis agglutinin receptors exposed by enzyme treatment remains relatively constant during subsequent cell maturation.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman G. A. Surface differentiation of hemopoietic cells demonstrated ultrastructurally with cationized ferritin. Cell Tissue Res. 1975 May 27;159(1):23–27. doi: 10.1007/BF00231992. [DOI] [PubMed] [Google Scholar]
  2. Ackerman G. A., Waksal S. D. Ultrastructural localization of concanavalin A binding sites on the surface of differentiating hemopoietic cells. Cell Tissue Res. 1974;150(3):331–342. doi: 10.1007/BF00220141. [DOI] [PubMed] [Google Scholar]
  3. Bruns G. A., Ingram V. M. The erythroid cells and haemoglobins of the chick embryo. Philos Trans R Soc Lond B Biol Sci. 1973 Oct 25;266(877):225–305. doi: 10.1098/rstb.1973.0050. [DOI] [PubMed] [Google Scholar]
  4. Chan L. L., Ingram V. M. Culture of erythropoietic cells from chick blastoderms. J Cell Biol. 1973 Mar;56(3):861–865. doi: 10.1083/jcb.56.3.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kleinschuster S. J., Moscona A. A. Interactions of embryonic and fetal neural retina cells with carbohydrate-binding phytoagglutinins: cell surface changes with dfferentiation. Exp Cell Res. 1972 Feb;70(2):397–410. doi: 10.1016/0014-4827(72)90152-8. [DOI] [PubMed] [Google Scholar]
  6. Krach S. W., Green A., Nicolson G. L., Oppenheimer S. B. Cell surface changes occurring during sea urchin embryonic development monitored by quantitative agglutination with plant lectins. Exp Cell Res. 1974 Mar 15;84(1):191–198. doi: 10.1016/0014-4827(74)90396-6. [DOI] [PubMed] [Google Scholar]
  7. Nicolson G. L. Anionic sites of human erythrocyte membranes. I. Effects of trypsin, phospholipase C, and pH on the topography of bound positively charged colloidal particles. J Cell Biol. 1973 May;57(2):373–387. doi: 10.1083/jcb.57.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nicolson G. L., Blaustein J., Etzler M. E. Characterization of two plant lectins from Ricinus communis and their quantitative interaction with a murine lymphoma. Biochemistry. 1974 Jan 1;13(1):196–204. doi: 10.1021/bi00698a029. [DOI] [PubMed] [Google Scholar]
  9. Nicolson G. L. Neuraminidase "unmasking" and failure of trypsin to "unmask" -D-galactose-like sites on erythrocyte, lymphoma, and normal and virus-transformed fibroblast cell membranes. J Natl Cancer Inst. 1973 Jun;50(6):1443–1451. doi: 10.1093/jnci/50.6.1443. [DOI] [PubMed] [Google Scholar]
  10. Nicolson G. L. Temperature-dependent mobility of concanavalin A sites on tumour cell surfaces. Nat New Biol. 1973 Jun 13;243(128):218–220. doi: 10.1038/newbio243218a0. [DOI] [PubMed] [Google Scholar]
  11. Oliver J. M., Zurier R. B., Berlin R. D. Concanavalin a cap formation on polymorphonuclear leukocytes of normal and beige (chediak-higashi) mice. Nature. 1975 Feb 6;253(5491):471–473. doi: 10.1038/253471a0. [DOI] [PubMed] [Google Scholar]
  12. Pollack R. E., Burger M. M. Surface-specific characteristics of a contact-inhibited cell line containing the SV40 viral genome. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1074–1076. doi: 10.1073/pnas.62.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Roberson M., Neri A., Oppenheimer S. B. Distribution of concanavalin A receptor sites on specific populations of embryonic cells. Science. 1975 Aug 22;189(4203):639–640. doi: 10.1126/science.1162345. [DOI] [PubMed] [Google Scholar]
  14. Rosenblith J. Z., Ukena T. E., Yin H. H., Berlin R. D., Karnovsky M. J. A comparative evaluation of the distribution of concanavalin A-binding sites on the surfaces of normal, virally-transformed, and protease-treated fibroblasts. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1625–1629. doi: 10.1073/pnas.70.6.1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sharon N., Lis H. Lectins: cell-agglutinating and sugar-specific proteins. Science. 1972 Sep 15;177(4053):949–959. doi: 10.1126/science.177.4053.949. [DOI] [PubMed] [Google Scholar]
  16. Skutelsky E., Marikovsky Y., Danon D. Immunoferitin analysis of membrane antigen density: A. Young and old human blood cells B. Developing erythroid cells and extruded erythroid nuclei. Eur J Immunol. 1974 Jul;4(7):512–518. doi: 10.1002/eji.1830040713. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES