Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Jun 1;69(3):548–556. doi: 10.1083/jcb.69.3.548

Conservation of ribosomal RNA during compensatory renal hypertrophy. A major mechanism in RNA accretion

PMCID: PMC2109703  PMID: 1270510

Abstract

After removal of one mouse kidney, compensatory hypertrophy in the remaining kidney is marked in 2 days by a 20% average increase in ribosomal RNA (rRNA) per cell. Both 28S and 18S RNA are conserved during the initial stages of compensatory renal hypertrophy to an extent sufficient to account for the rest of the observed accumulation of rRNA. Like some cultured cells, the kidney conserves rRNA during physiological growth.

Full Text

The Full Text of this article is available as a PDF (598.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ab G., Malt R. A. Metabolism of ribosomal precursor ribonucleic acid in kidney. J Cell Biol. 1970 Aug;46(2):362–369. doi: 10.1083/jcb.46.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barka T. Turnover of ribosomal RNA in the submandibular gland of normal and isoproterenol-treated rats. Exp Cell Res. 1972 Oct;74(2):439–449. doi: 10.1016/0014-4827(72)90399-0. [DOI] [PubMed] [Google Scholar]
  4. Boedtker H., Crkvenjakov R. B., Dewey K. F., Lanks K. Some properties of high molecular weight ribonucleic acid isolated from chick embryo polysomes. Biochemistry. 1973 Oct 23;12(22):4356–4360. doi: 10.1021/bi00746a009. [DOI] [PubMed] [Google Scholar]
  5. Dicker S. E., Shirley D. G. Mechanism of compensatory renal hypertrophy. J Physiol. 1971 Dec;219(3):507–523. doi: 10.1113/jphysiol.1971.sp009675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Halliburton I. W., Thomson R. Y. Chemical aspects of compensatory renal hypertrophy. Cancer Res. 1965 Dec;25(11):1882–1887. [PubMed] [Google Scholar]
  7. Hill J. M., Ab G., Malt R. A. Ribonucleic acid labelling and nucleotide pools during compensatory renal hypertrophy. Biochem J. 1974 Dec;144(3):447–453. doi: 10.1042/bj1440447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hill J. M., Malamud D. Decreased protein catabolism during stimulated growth. FEBS Lett. 1974 Sep 15;46(1):308–311. doi: 10.1016/0014-5793(74)80394-7. [DOI] [PubMed] [Google Scholar]
  9. Hill J. M. Ribosomal RNA metabolism during renal hypertrophy. Evidence of decreased degradation of newly synthesized ribosomal RNA. J Cell Biol. 1975 Jan;64(1):260–265. doi: 10.1083/jcb.64.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirsch C. A., Hiatt H. H. Turnover of liver ribosomes in fed and in fasted rats. J Biol Chem. 1966 Dec 25;241(24):5936–5940. [PubMed] [Google Scholar]
  11. Hirsch C. A. Quantitative determination of the ribosomal ribonucleic acid content of liver and Novikoff hepatoma from fed and from fasted rats. J Biol Chem. 1967 Jun 25;242(12):2822–2827. [PubMed] [Google Scholar]
  12. Judes C., Fuchs J. P., Jacob M. Les RNA cytoplasmiques mineurs: mise en évidence et caractérisation d'um RNA 21 S du poulet. Biochimie. 1972;54(8):1031–1040. doi: 10.1016/s0300-9084(72)80054-3. [DOI] [PubMed] [Google Scholar]
  13. Kokileva L., Mladenova I., Tsanev R. Differential thermal stability of old and new ribosomal RNA of rat liver. FEBS Lett. 1971 Feb 9;12(6):313–316. doi: 10.1016/0014-5793(71)80003-0. [DOI] [PubMed] [Google Scholar]
  14. Kolodny G. M. Turnover of ribosomal RNA in mouse fibroblasts (3T3) in culture. Exp Cell Res. 1975 Mar 1;91(1):101–106. doi: 10.1016/0014-4827(75)90146-9. [DOI] [PubMed] [Google Scholar]
  15. Kurnick N. B., Lindsay P. A. Nucleic acids in compensatory renal hypertrophy. Lab Invest. 1968 Jun;18(6):700–708. [PubMed] [Google Scholar]
  16. Levin S., Fausto N. Minor components of cytoplasmic ribonucleic acid from normal and regenerating rat livers. Biochemistry. 1973 Mar 27;12(7):1282–1290. doi: 10.1021/bi00731a007. [DOI] [PubMed] [Google Scholar]
  17. Loeb J. N., Howell R. R., Tomkins G. M. Turnover of ribosomal RNA in rat liver. Science. 1965 Sep 3;149(3688):1093–1095. doi: 10.1126/science.149.3688.1093. [DOI] [PubMed] [Google Scholar]
  18. Malt R. A., Lemaitre D. A. Accretion and turnover of RNA in the renoprival kidney. Am J Physiol. 1968 May;214(5):1041–1047. doi: 10.1152/ajplegacy.1968.214.5.1041. [DOI] [PubMed] [Google Scholar]
  19. Malt R. A., Lemaittre D. A. Nucleic acids in fetal kidney after maternal nephrectomy. Proc Soc Exp Biol Med. 1969 Feb;130(2):539–542. doi: 10.3181/00379727-130-35600. [DOI] [PubMed] [Google Scholar]
  20. Mishra R. K., Feltham L. A. RNA polymerase stimulation: effect of aldosterone and other adrenocorticoids on RNA turnover in rat kidney. Can J Biochem. 1975 Jan;53(1):70–78. doi: 10.1139/o75-011. [DOI] [PubMed] [Google Scholar]
  21. Nordgren H., Stenram U. Decreased half-life of the RNA of free and membrane-bound ribosomes in the liver of protein-deprived rats. Hoppe Seylers Z Physiol Chem. 1972 Dec;353(12):1832–1836. doi: 10.1515/bchm2.1972.353.2.1832. [DOI] [PubMed] [Google Scholar]
  22. Ottolenghi C., Barnabei O. Reduced breakdown in vivo of liver microsomal ribonucleic acid and protein in rats treated with cortisone. Endocrinology. 1970 May;86(5):949–954. doi: 10.1210/endo-86-5-949. [DOI] [PubMed] [Google Scholar]
  23. Penman S. RNA metabolism in the HeLa cell nucleus. J Mol Biol. 1966 May;17(1):117–130. doi: 10.1016/s0022-2836(66)80098-0. [DOI] [PubMed] [Google Scholar]
  24. Priestley G. C., Malt R. A. Membrane-bound ribosomes in kidney: methods of estimation and effect of compensatory renal growth. J Cell Biol. 1969 Jun;41(3):886–893. doi: 10.1083/jcb.41.3.886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Quincey R. V., Wilson S. H. The utilization of genes for ribosomal RNA, 5S RNA, and transfer RNA in liver cells of adult rats. Proc Natl Acad Sci U S A. 1969 Nov;64(3):981–988. doi: 10.1073/pnas.64.3.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Threlfall G., Taylor D. M., Buck A. T. Studies of the changes in growth and DNA synthesis in the rat kidney during experimentally induced renal hypertrophy. Am J Pathol. 1967 Jan;50(1):1–14. [PMC free article] [PubMed] [Google Scholar]
  27. Weber M. J. Ribosomal RNA turnover in contact inhibited cells. Nat New Biol. 1972 Jan 12;235(54):58–61. doi: 10.1038/newbio235058a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES