Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Jun 1;69(3):622–637. doi: 10.1083/jcb.69.3.622

Effects of nuclease and protease digestion on the ultrastructure of Paramecium basal bodies

PMCID: PMC2109711  PMID: 178669

Abstract

The action of deoxyribonuclease, ribonuclease, perchloric acid, and pronase on the fine structure of basal bodies of sectioned Paramecium was observed as part of a more extensive autoradiographic electron microscope analysis directed toward the problem of basal body DNA. DNase was found to have no detectable effect on basal body fine structure. Pronase first solubilized the linkers and C tubules of the triplets, then attacked the protein portion of the axosome, a localized portion of the ciliary axoneme adjacent to the distal end of the basal body, the rim fiber, and newly described lumen spiral complex. Prolonged pronase treatment disrupted the remaining microtubular elements, basal body plates, and cartwheel. RNase removed material from the axosome and the lumen complex, a conspicuous structure occupying the central portion of the basal body and consisting of a twisted or looped 90-A diam fiber or, more probably, pair of fibers, in association with large, dense granules. The apparent removal of both RNA and protein from this basal body structure by either of the two corresponding enzymes suggests an unusual organization of the two components. Observations from this and other laboratories suggest that the basal body RNA is single stranded. Its function is unknown but alternatives are discussed.

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARGETSINGER J. THE ISOLATION OF CILIARY BASAL BODIES (KINETOSOMES) FROM TETRAHYMENA PYRIFORMIS. J Cell Biol. 1965 Jan;24:154–157. doi: 10.1083/jcb.24.1.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Behnke O., Forer A. Evidence for four classes of microtubules in individual cells. J Cell Sci. 1967 Jun;2(2):169–192. doi: 10.1242/jcs.2.2.169. [DOI] [PubMed] [Google Scholar]
  3. Dippell R. V. The development of basal bodies in paramecium. Proc Natl Acad Sci U S A. 1968 Oct;61(2):461–468. doi: 10.1073/pnas.61.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Flavell R. A., Jones I. G. DNA from isolated pellicles of Tetrahymena. J Cell Sci. 1971 Nov;9(3):719–726. doi: 10.1242/jcs.9.3.719. [DOI] [PubMed] [Google Scholar]
  5. Grimes G. W. Origin and development of kinetosomes in Oxytricha fallax. J Cell Sci. 1973 Jul;13(1):43–53. doi: 10.1242/jcs.13.1.43. [DOI] [PubMed] [Google Scholar]
  6. HOFFMAN E. J. THE NUCLEIC ACIDS OF BASAL BODIES ISOLATED FROM TETRAHYMENA PYRIFORMIS. J Cell Biol. 1965 May;25:217–228. doi: 10.1083/jcb.25.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hartman H., Puma J. P., Gruney T., Jr Evidence for the association of RNA with the ciliary basal bodies of Tetrahymena. J Cell Sci. 1974 Nov;16(2):241–259. doi: 10.1242/jcs.16.2.241. [DOI] [PubMed] [Google Scholar]
  8. Hufnagel L. A. Properties of DNA associated with raffinose-isolated pellicles of Paramecium aurelia. J Cell Sci. 1969 Nov;5(3):561–573. doi: 10.1242/jcs.5.3.561. [DOI] [PubMed] [Google Scholar]
  9. KLUG A., CASPAR D. L. The structure of small viruses. Adv Virus Res. 1960;7:225–325. doi: 10.1016/s0065-3527(08)60012-3. [DOI] [PubMed] [Google Scholar]
  10. Kalnins V. I., Porter K. R. Centriole replication during ciliogenesis in the chick tracheal epithelium. Z Zellforsch Mikrosk Anat. 1969;100(1):1–30. doi: 10.1007/BF00343818. [DOI] [PubMed] [Google Scholar]
  11. Kasten F. H. Cytochemical studies with acridine orange and the influence of dye contaminants in the staining of nucleic acids. Int Rev Cytol. 1967;21:141–202. doi: 10.1016/s0074-7696(08)60814-1. [DOI] [PubMed] [Google Scholar]
  12. Kwan S. W., Brawerman G. A particle associated with the polyadenylate segment in mammalian messenger RNA. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3247–3250. doi: 10.1073/pnas.69.11.3247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Matsusaka T. ATPase activity in the ciliary rootlet of human retinal rods. J Cell Biol. 1967 Apr;33(1):203–208. doi: 10.1083/jcb.33.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McCormick J. J., Larson L. J., Maher V. M. Problems in the extraction DNA when utilizing pancreatic RNAase and pronase. Biochim Biophys Acta. 1974 May 17;349(2):145–147. doi: 10.1016/0005-2787(74)90075-6. [DOI] [PubMed] [Google Scholar]
  15. Mizukami I., Gall J. Centriole replication. II. Sperm formation in the fern, Marsilea, and the cycad, Zamia. J Cell Biol. 1966 Apr;29(1):97–111. doi: 10.1083/jcb.29.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Plattner H. Ciliary granule plaques: membrane-intercalated particle aggregates associated with Ca2+-binding sites in paramecium. J Cell Sci. 1975 Jul;18(2):257–269. doi: 10.1242/jcs.18.2.257. [DOI] [PubMed] [Google Scholar]
  17. RIS H., PLAUT W. Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. J Cell Biol. 1962 Jun;13:383–391. doi: 10.1083/jcb.13.3.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Randall J., Disbrey C. Evidence for the presence of DNA at basal body sites in Tetrahymena pyriformis. Proc R Soc Lond B Biol Sci. 1965 Jul 27;162(989):473–491. doi: 10.1098/rspb.1965.0051. [DOI] [PubMed] [Google Scholar]
  19. Rannestad J., Williams N. E. The synthesis of microtubule and other proteins of the oral apparatus in Tetrahymena pyriformis. J Cell Biol. 1971 Sep;50(3):709–720. doi: 10.1083/jcb.50.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Robinow C. F., Marak J. A fiber apparatus in the nucleus of the yeast cell. J Cell Biol. 1966 Apr;29(1):129–151. doi: 10.1083/jcb.29.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rubin R. W., Cunningham W. P. Partial purification and phosphotungstate solubilization of basal bodies and kinetodesmal fibers from Tetrahymena pyriformis. J Cell Biol. 1973 Jun;57(3):601–612. doi: 10.1083/jcb.57.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SCHREIL W. H. STUDIES ON THE FIXATION OF ARTIFICIAL AND BACTERIAL DNA PLASMS FOR THE ELECTRON MICROSCOPY OF THIN SECTIONS. J Cell Biol. 1964 Jul;22:1–20. doi: 10.1083/jcb.22.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SEAMAN G. R. Large-scale isolation of kinetosomes from the ciliated protozoan Tetrahymena pyriformis. Exp Cell Res. 1960 Nov;21:292–302. doi: 10.1016/0014-4827(60)90261-5. [DOI] [PubMed] [Google Scholar]
  24. Sattler C. A., Staehelin L. A. Ciliary membrane differentiations in Tetrahymena pyriformis. Tetrahymena has four types of cilia. J Cell Biol. 1974 Aug;62(2):473–490. doi: 10.1083/jcb.62.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Smith-Sonneborn J., Plaut W. Evidence for the presence of DNA in the pellicle of Paramecium. J Cell Sci. 1967 Jun;2(2):225–234. doi: 10.1242/jcs.2.2.225. [DOI] [PubMed] [Google Scholar]
  26. Smith-Sonneborn J., Plaut W. Studies on the autonomy of pellicular DNA in Paramecium. J Cell Sci. 1969 Sep;5(2):365–372. doi: 10.1242/jcs.5.2.365. [DOI] [PubMed] [Google Scholar]
  27. Steinman R. M. Inhibitory effects of colchicine on ciliogenesis in ectoderm of Xenopus laevis. J Ultrastruct Res. 1970 Feb;30(3):423–440. doi: 10.1016/s0022-5320(70)80073-9. [DOI] [PubMed] [Google Scholar]
  28. Wolfe J. Structural analysis of basal bodies of the isolated oral apparatus of Tetrahymena pyriformis. J Cell Sci. 1970 May;6(3):679–700. doi: 10.1242/jcs.6.3.679. [DOI] [PubMed] [Google Scholar]
  29. Wunderlich F., Speth V. Membranes in Tetrahymena. I. The cortical pattern. J Ultrastruct Res. 1972 Nov;41(3):258–269. doi: 10.1016/s0022-5320(72)90068-8. [DOI] [PubMed] [Google Scholar]
  30. Younger K. B., Banerjee S., Kelleher J. K., Winston M., Margulis L. Evidence that the synchronized production of new basal bodies is not associated with DNA synthesis in Stentor coeruleus. J Cell Sci. 1972 Sep;11(2):621–637. doi: 10.1242/jcs.11.2.621. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES