Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Oct 1;71(1):35–48. doi: 10.1083/jcb.71.1.35

Changes in the topography of the sea urchin egg after fertilization

PMCID: PMC2109718  PMID: 988032

Abstract

Changes in the topography of the sea urchin egg after fertilization were studied by scanning and transmission electron microscopy. Strongylocentrotus purpuratus eggs were treated with dithiothreitol to modify the vitelline layer and to prevent formation of a fertilization membrane. Dithiothreitol treatment caused the microvilli to become more irregular in shape, length, and diameter than those of untreated eggs. The microvilli were similarly modified by trypsin treatment. This effect did not appear to be due to disruption of cytoskeletal elements beneath the plasma membrane, for neither colchicine nor cytochalasin B altered microvillar morphology. Thus, it appears that the vitelline layer may act in the maintenance of surface form of unfertilized eggs. Since dithiothreitol-treated eggs did not elevate a fertilization membrane, scanning electron microscopy could be used to directly observe modifications in the egg plasma membrane after fertilization. The wave of cortical granule exocytosis initiated at the point of attachment of the fertilizing sperm was characterized by the appearance of pits that subsequently opened, releasing the cortical granule contents and leaving depressions upon the egg surface. The perigranular membranes inserted during exocytosis were seen as smooth patches between the microvillous patches remaining from the original egg surface. This produced a mosaic surface with more than double the amount of membrane of unfertilized eggs. The mosaic surface subsequently reorganized to accommodate the inserted membrane material by elongation of microvilli. Blebs and membranous whorls present before reorganization suggested the existence of an unstable intermediate state of plasma membrane reorganization. Exocytosis and mosaic membrane formation were not blocked by colchicine or cytochalasin B, but microvillar elongation was blocked by cytochalasin B treatment.

Full Text

The Full Text of this article is available as a PDF (6.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison A. C., Davies P. Interactions of membranes, microfilaments, and microtubules in endocytosis and exocytosis. Adv Cytopharmacol. 1974;2:237–248. [PubMed] [Google Scholar]
  2. Allison A. C., Davies P. Mechanisms of endocytosis and exocytosis. Symp Soc Exp Biol. 1974;(28):419–446. [PubMed] [Google Scholar]
  3. Anderson E. Oocyte differentiation in the sea urchin, Arbacia punctulata, with particular reference to the origin of cortical granules and their participation in the cortical reaction. J Cell Biol. 1968 May;37(2):514–539. doi: 10.1083/jcb.37.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bretscher M. S. Membrane structure: some general principles. Science. 1973 Aug 17;181(4100):622–629. doi: 10.1126/science.181.4100.622. [DOI] [PubMed] [Google Scholar]
  5. Bryan J. The isolation of a major structural element of the sea urchin fertilization membrane. J Cell Biol. 1970 Mar;44(3):635–645. doi: 10.1083/jcb.44.3.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carroll E. J., Jr, Epel D. Elevation and hardening of the fertilization membrane in sea urchin eggs. Role of the soluble fertilization product. Exp Cell Res. 1975 Feb;90(2):429–432. doi: 10.1016/0014-4827(75)90332-8. [DOI] [PubMed] [Google Scholar]
  7. Carroll E. J., Jr, Epel D. Isolation and biological activity of the proteases released by sea urchin eggs following fertilization. Dev Biol. 1975 May;44(1):22–32. doi: 10.1016/0012-1606(75)90373-5. [DOI] [PubMed] [Google Scholar]
  8. ENDO Y. Changes in the cortical layer of sea urchin eggs at fertilization as studied with the electron microscope. I. Clypeaster japonicus. Exp Cell Res. 1961 Nov;25:383–397. doi: 10.1016/0014-4827(61)90288-9. [DOI] [PubMed] [Google Scholar]
  9. Edelman G. M., Yahara I., Wang J. L. Receptor mobility and receptor-cytoplasmic interactions in lymphocytes. Proc Natl Acad Sci U S A. 1973 May;70(5):1442–1446. doi: 10.1073/pnas.70.5.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Edidin M. Rotational and translational diffusion in membranes. Annu Rev Biophys Bioeng. 1974;3(0):179–201. doi: 10.1146/annurev.bb.03.060174.001143. [DOI] [PubMed] [Google Scholar]
  11. Epel D. Methods for removal of the vitelline membrane of sea urchin eggs. II. Controlled exposure to trypsin to eliminate post-fertilization clumping of embryos. Exp Cell Res. 1970 Jul;61(1):69–70. doi: 10.1016/0014-4827(70)90258-2. [DOI] [PubMed] [Google Scholar]
  12. Epel D., Weaver A. M., Mazia D. Methods for revoval of the vitelline membrane of sea urchin eggs. I. Use of dithiothreitol (Cleland Reagent). Exp Cell Res. 1970 Jul;61(1):64–68. doi: 10.1016/0014-4827(70)90257-0. [DOI] [PubMed] [Google Scholar]
  13. Frye L. D., Edidin M. The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. J Cell Sci. 1970 Sep;7(2):319–335. doi: 10.1242/jcs.7.2.319. [DOI] [PubMed] [Google Scholar]
  14. HAGSTROM B. E. Further experiments on jelly-free sea urchin eggs. Exp Cell Res. 1959 May;17(2):256–261. doi: 10.1016/0014-4827(59)90217-4. [DOI] [PubMed] [Google Scholar]
  15. Hiramoto Y. Rheological properties of sea urchin eggs. Biorheology. 1970 Jan;6(3):201–234. doi: 10.3233/bir-1970-6306. [DOI] [PubMed] [Google Scholar]
  16. Inoue S., Hardy J. P. Fine structure of the fertilization membranes of sea urchin embryos. Exp Cell Res. 1971 Oct;68(2):259–272. doi: 10.1016/0014-4827(71)90150-9. [DOI] [PubMed] [Google Scholar]
  17. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Longo F. J., Anderson E. A cytological study of the relation of the cortical reaction to subsequent events of fertilization in urethane-treated eggs of the sea urchin, Arbacia punctulata. J Cell Biol. 1970 Dec;47(3):646–665. doi: 10.1083/jcb.47.3.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mazia D., Schatten G., Steinhardt R. Turning on of activities in unfertilized sea urchin eggs: correlation with changes of the surface. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4469–4473. doi: 10.1073/pnas.72.11.4469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  21. Petit V. A., Edidin M. Lateral phase separation of lipids in plasma membranes: effect of temperature on the mobility of membrane antigens. Science. 1974 Jun 14;184(4142):1183–1185. doi: 10.1126/science.184.4142.1183. [DOI] [PubMed] [Google Scholar]
  22. Poste G., Allison A. C. Membrane fusion. Biochim Biophys Acta. 1973 Dec 28;300(4):421–465. doi: 10.1016/0304-4157(73)90015-4. [DOI] [PubMed] [Google Scholar]
  23. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  24. Szubinska B. "New membrane" formation in Amoeba proteus upon injury of individual cells. Electron microscope observations. J Cell Biol. 1971 Jun;49(3):747–772. doi: 10.1083/jcb.49.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tegner M. J., Epel D. Sea urchin sperm-egg interactions studied with the scanning electron microscope. Science. 1973 Feb 16;179(4074):685–688. doi: 10.1126/science.179.4074.685. [DOI] [PubMed] [Google Scholar]
  26. Ukena T. E., Berlin R. D. Effect of colchicine and vinblastine on the topographical separation of membrane functions. J Exp Med. 1972 Jul 1;136(1):1–7. doi: 10.1084/jem.136.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vacquier V. D., Tegner M. J., Epel D. Protease activity establishes the block against polyspermy in sea urchin eggs. Nature. 1972 Dec 8;240(5380):352–353. doi: 10.1038/240352a0. [DOI] [PubMed] [Google Scholar]
  28. Vacquier V. D. The isolation of intact cortical granules from sea urchin eggs: calcium lons trigger granule discharge. Dev Biol. 1975 Mar;43(1):62–74. doi: 10.1016/0012-1606(75)90131-1. [DOI] [PubMed] [Google Scholar]
  29. Ziomek C. A., Epel D. Polyspermy block of Spisula eggs is prevented by cytochalasin B. Science. 1975 Jul 11;189(4197):139–141. doi: 10.1126/science.1173469. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES