Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Oct 1;71(1):218–231. doi: 10.1083/jcb.71.1.218

Variations in distribution of con A receptor sites and anionic groups during red blood cell differentiation in the rat

PMCID: PMC2109729  PMID: 977648

Abstract

The distribution of receptors for concanavalin A (Con A) and anionic groups on plasma membranes of developing blood cells was investigated in the rat. Glutaraldehyde-fixed bone marrow and circulating blood cells were exposed to ferritin-conjugated Con A or positively chaged ferric oxide (CI) and processed for electro n microscopy. The frequency of Con A and CI binding sites varied during different erythroid developmental stages and amont different leukoid cell types. There was a constant inverse relationship between Con A and CI binding sites. Among leukoid cells, Con A binding was high on plasma cells and macrophages, lower on neutrophils and lymphocytes, and still lower on eosinophils and basophils; CI binding was highest in the latter and lowest in plasma cells and macrophages. Among erythroid cells, there was a progressive increase in Con A and a decrease in CI binding after successive divisions of erythroblasts, and a progressive decrease in Con A and an increase in CI binding upon maturation of the orthochromatic erythroblast to the reticulocyte. The most pronounced modification in distribution of these sites occurred during nuclear expulsion: that protion of the plasma membrane surrounding the extruded nucleus was heavily labeled by Con A (up to four times that of the orthochromatic erythroblast) whereas the reticulocyte had considerably fewer sites. The situation was reversed with CI. The results suggest that the concentration of nonsialated glycoproteins (to which Con A binds) varies inversely to that of sialoproteins (to which CI binds) in the membrane of the differentiating erythroid cell. The remarkable changes observed at the time of nuclear extrusion suggest that there is either local modification of glycosylated groups with removal of sialyl residues from the membrane surrounding the extruded nucleus of selective segregation of membrane glycoproteins leading to a high concentration of sialoproteins (glycophroin) in the membrane of the mature erythrocyte.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman G. A., Clark M. A. A cytochemical evaluation of pyroantimonate binding to the plasmalemma of blood and bone marrow cells and its relationship to cellular maturation. J Histochem Cytochem. 1972 Nov;20(11):880–895. doi: 10.1177/20.11.880. [DOI] [PubMed] [Google Scholar]
  2. Ackerman G. A., Waksal S. D. Ultrastructural localization of concanavalin A binding sites on the surface of differentiating hemopoietic cells. Cell Tissue Res. 1974;150(3):331–342. doi: 10.1007/BF00220141. [DOI] [PubMed] [Google Scholar]
  3. Bainton D. F., Farquhar M. G. Differences in enzyme content of azurophil and specific granules of polymorphonuclear leukocytes. II. Cytochemistry and electron microscopy of bone marrow cells. J Cell Biol. 1968 Nov;39(2):299–317. doi: 10.1083/jcb.39.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fehlmann M., Lafleur L., Marceau N. Major changes in surface membrane proteins during erythropoiesis. Biochem Biophys Res Commun. 1975 Sep 2;66(1):322–327. doi: 10.1016/s0006-291x(75)80331-7. [DOI] [PubMed] [Google Scholar]
  6. Findlay J. B. The receptor proteins for concanavalin A and Lens culinaris phytohemagglutinin in the membrane of the human erythrocyte. J Biol Chem. 1974 Jul 25;249(14):4398–4403. [PubMed] [Google Scholar]
  7. Fukuda M., Osawa T. Isolation and characterization of a glycoprotein from human group O erythrocyte membrane. J Biol Chem. 1973 Jul 25;248(14):5100–5105. [PubMed] [Google Scholar]
  8. Gasic G. J., Berwick L., Sorrentino M. Positive and negative colloidal iron as cell surface electron stains. Lab Invest. 1968 Jan;18(1):63–71. [PubMed] [Google Scholar]
  9. Gasko O., Danon D. Endocytosis and exocytosis in membrane remodelling during reticulocyte maturation. Br J Haematol. 1974 Dec;28(4):463–470. doi: 10.1111/j.1365-2141.1974.tb06665.x. [DOI] [PubMed] [Google Scholar]
  10. Guidotti G. The composition of biological membranes. Arch Intern Med. 1972 Feb;129(2):194–201. [PubMed] [Google Scholar]
  11. Inoue M., Mori M., Seno S., Utsumi K., Yasuda T. Structural difference in sites on surface membrane of mature and immature erythrocytes. Nature. 1974 Jul 19;250(463):247–248. doi: 10.1038/250247a0. [DOI] [PubMed] [Google Scholar]
  12. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lodish H. F. Biosynthesis of reticulocyte membrane proteins by membrane-free polyribosomes. Proc Natl Acad Sci U S A. 1973 May;70(5):1526–1530. doi: 10.1073/pnas.70.5.1526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marchesi V. T., Tillack T. W., Jackson R. L., Segrest J. P., Scott R. E. Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1445–1449. doi: 10.1073/pnas.69.6.1445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Marikovsky Y., Danon D. Electron microscope analysis of young and old red blood cells stained with colloidal iron for surface charge evaluation. J Cell Biol. 1969 Oct;43(1):1–7. doi: 10.1083/jcb.43.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Minio F., Howe C., Hsu K. C., Rifkind R. A. Antigen density on differentiating erythroid cells. Nat New Biol. 1972 Jun 7;237(75):187–188. doi: 10.1038/newbio237187a0. [DOI] [PubMed] [Google Scholar]
  17. Nicolson G. L. Anionic sites of human erythrocyte membranes. I. Effects of trypsin, phospholipase C, and pH on the topography of bound positively charged colloidal particles. J Cell Biol. 1973 May;57(2):373–387. doi: 10.1083/jcb.57.2.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nicolson G. L. Neuraminidase "unmasking" and failure of trypsin to "unmask" -D-galactose-like sites on erythrocyte, lymphoma, and normal and virus-transformed fibroblast cell membranes. J Natl Cancer Inst. 1973 Jun;50(6):1443–1451. doi: 10.1093/jnci/50.6.1443. [DOI] [PubMed] [Google Scholar]
  19. Nicolson G. L., Painter R. G. Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles. J Cell Biol. 1973 Nov;59(2 Pt 1):395–406. doi: 10.1083/jcb.59.2.395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nicolson G. L., Singer S. J. Ferritin-conjugated plant agglutinins as specific saccharide stains for electron microscopy: application to saccharides bound to cell membranes. Proc Natl Acad Sci U S A. 1971 May;68(5):942–945. doi: 10.1073/pnas.68.5.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nicolson G. L. The interactions of lectins with animal cell surfaces. Int Rev Cytol. 1974;39:89–190. doi: 10.1016/s0074-7696(08)60939-0. [DOI] [PubMed] [Google Scholar]
  22. Oliver J. M., Ukena T. E., Berlin R. D. Effects of phagocytosis and colchicine on the distribution of lectin-binding sites on cell surfaces. Proc Natl Acad Sci U S A. 1974 Feb;71(2):394–398. doi: 10.1073/pnas.71.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Parmley R. T., Martin B. J., Spicer S. S. Staining of blood cell surfaces with a lectin-horseradish peroxidase method. J Histochem Cytochem. 1973 Oct;21(10):912–922. doi: 10.1177/21.10.912. [DOI] [PubMed] [Google Scholar]
  24. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Silva P. P., Nicolson G. L. Freeze-etch localization of concanavalin A receptors to the membrane intercalated particles of human erythrocyte ghost membranes. Biochim Biophys Acta. 1974 Sep 23;363(3):311–319. doi: 10.1016/0005-2736(74)90071-6. [DOI] [PubMed] [Google Scholar]
  26. Skutelsky E., Danon D. An electron microscopic study of nuclear elimination from the late erythroblast. J Cell Biol. 1967 Jun;33(3):625–635. doi: 10.1083/jcb.33.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Skutelsky E., Danon D. Comparative study of nuclear expulsion from the late erythroblast and cytokinesis. Exp Cell Res. 1970 Jun;60(3):427–436. doi: 10.1016/0014-4827(70)90536-7. [DOI] [PubMed] [Google Scholar]
  28. Skutelsky E., Danon D. On the expulsion of the erythroid nucleus and its phagocytosis. Anat Rec. 1972 May;173(1):123–126. doi: 10.1002/ar.1091730111. [DOI] [PubMed] [Google Scholar]
  29. Skutelsky E., Danon D. Reduction in surface charge as an explanation of the recognition by macrophages of nuclei expelled from normoblasts. J Cell Biol. 1969 Oct;43(1):8–15. doi: 10.1083/jcb.43.1.8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weiss L., Zeigel R., Jung O. S., Bross I. D. Binding of positively charged particles to glutaraldehyde-fixed human erythrocytes. Exp Cell Res. 1972 Jan;70(1):57–64. doi: 10.1016/0014-4827(72)90181-4. [DOI] [PubMed] [Google Scholar]
  32. Yahara I., Edelman G. M. The effects of concanavalin A on the mobility of lymphocyte surface receptors. Exp Cell Res. 1973 Sep;81(1):143–155. doi: 10.1016/0014-4827(73)90121-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES