Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Oct 1;71(1):136–158. doi: 10.1083/jcb.71.1.136

Reversible particle movements associated with unstacking and restacking of chloroplast membranes in vitro

PMCID: PMC2109730  PMID: 988028

Abstract

Freeze-fracture and freeze-etch techniques have been employed to study the supramolecular structure of isolated spinach chloroplast membranes and to monitor structural changes associated with in vitro unstacking and restacking of these membranes. High-resolution particle size histograms prepared from the four fracture faces of normal chloroplast membranes reveal the presence of four distinct categories of intramembranous particles that are nonrandomly distributed between grana and stroma membranes. The large surface particles show a one to one relationship with the EF-face particles. Since the distribution of these particles between grana and stroma membranes coincides with the distribution of photosystem II (PS II) activity, it is argued that they could be structural equivalents of PS II complexes. An interpretative model depicting the structural relationship between all categories of particles is presented. Experimental unstacking of chloroplast membranes in low-salt medium for at least 45 min leads to a reorganization of the lamellae and to a concomitant intermixing of the different categories of membrane particles by means of translational movements in the plane of the membrane. In vitro restacking of such experimentally unstacked chloroplast membranes can be achieved by adding 2-20 mM MgCl2 or 100-200 mM NaCl to the membrane suspension. Membranes allowed to restack for at least 1 h at room temperature demonstrate a resegregation of the EF-face particles into the newly formed stacked membrane regions to yield a pattern and a size distribution nearly indistinguishable from the normally stacked controls. Restacking occurs in two steps: a rapid adhesion of adjoining stromal membrane surfaces with little particle movement, and a slower diffusion of additional large intramembranous particles into the stacked regions where they become trapped. Chlorophyll a:chlorophyll b ratios of membrane fraction obtained from normal, unstacked, and restacked membranes show that the particle movements are paralleled by movements of pigment molecules. The directed and reversible movements of membrane particles in isolated chloroplasts are compared with those reported for particles of plasma membranes.

Full Text

The Full Text of this article is available as a PDF (6.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M., Boardman N. K. Fractionation of the photochemical systems of photosynthesis. I. Chlorophyll contents and photochemical activities of particles isolated from spinach chloroplasts. Bibl Laeger. 1966 Mar 14;112(3):403–421. doi: 10.1016/0926-6585(66)90244-5. [DOI] [PubMed] [Google Scholar]
  2. Anderson J. M. The molecular organization of chloroplast thylakoids. Biochim Biophys Acta. 1975 Aug 15;416(2):191–235. doi: 10.1016/0304-4173(75)90007-5. [DOI] [PubMed] [Google Scholar]
  3. Armond P. A., Arntzen C. J., Briantais J. M., Vernotte C. Differentiation of chloroplast lamellae. Light harvesting efficiency and grana development. Arch Biochem Biophys. 1976 Jul;175(1):54–63. doi: 10.1016/0003-9861(76)90484-7. [DOI] [PubMed] [Google Scholar]
  4. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Arntzen C. J., Dilley R. A., Peters G. A., Shaw E. R. Photochemical activity and structural studies of photosystems derived from chloroplast grana and stroma lamellae. Biochim Biophys Acta. 1972 Jan 21;256(1):85–107. doi: 10.1016/0005-2728(72)90165-x. [DOI] [PubMed] [Google Scholar]
  6. Benedetti E. L., Dunia I., Bloemendal H. Development of junctions during differentiation of lens fibers. Proc Natl Acad Sci U S A. 1974 Dec;71(12):5073–5077. doi: 10.1073/pnas.71.12.5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
  8. Branton D., Park R. B. Subunits in chloroplast lamellae. J Ultrastruct Res. 1967 Aug;19(3):283–303. doi: 10.1016/s0022-5320(67)80222-3. [DOI] [PubMed] [Google Scholar]
  9. Davis D. J., Armond P. A., Gross E. L., Arntzen C. J. Differentiation of chloroplast lamellae. Onset of cation regulation of excitation energy distribution. Arch Biochem Biophys. 1976 Jul;175(1):64–70. doi: 10.1016/0003-9861(76)90485-9. [DOI] [PubMed] [Google Scholar]
  10. Decker R. S., Friend D. S. Assembly of gap junctions during amphibian neurulation. J Cell Biol. 1974 Jul;62(1):32–47. doi: 10.1083/jcb.62.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garber M. P., Steponkus P. L. Identification of chloroplast coupling factor by freeze-etching and negative-staining techniques. J Cell Biol. 1974 Oct;63(1):24–34. doi: 10.1083/jcb.63.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goodchild D. J., Park R. B. Further evidence for stroma lamellae as a source of photosystem I fractions from spinach chloroplasts. Biochim Biophys Acta. 1971 Mar 2;226(2):393–399. doi: 10.1016/0005-2728(71)90106-x. [DOI] [PubMed] [Google Scholar]
  13. Gross E., Dilley R. A., San Pietro A. Control of electron flow in chloroplasts by cations. Arch Biochem Biophys. 1969 Nov;134(2):450–462. doi: 10.1016/0003-9861(69)90305-1. [DOI] [PubMed] [Google Scholar]
  14. Izawa S., Good N. E. Effect of Salts and Electron Transport on the Conformation of Isolated Chloroplasts. II. Electron Microscopy. Plant Physiol. 1966 Mar;41(3):544–552. doi: 10.1104/pp.41.3.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johnson R., Hammer M., Sheridan J., Revel J. P. Gap junction formation between reaggregated Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4536–4540. doi: 10.1073/pnas.71.11.4536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kan K. S., Thornber J. P. The Light-harvesting Chlorophyll a/b-Protein Complex of Chlamydomonas reinhardii. Plant Physiol. 1976 Jan;57(1):47–52. doi: 10.1104/pp.57.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Karnovsky M. J., Unanue E. R., Leventhal M. Ligand-induced movement of lymphocyte membrane macromolecules. II. Mapping of surface moieties. J Exp Med. 1972 Oct 1;136(4):907–930. doi: 10.1084/jem.136.4.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Loewenstein W. R. On the genesis of cellular communication. Dev Biol. 1967 Jun;15(6):503–520. doi: 10.1016/0012-1606(67)90050-4. [DOI] [PubMed] [Google Scholar]
  19. Miller K. R. A particle spanning the photosynthetic membrane. J Ultrastruct Res. 1976 Jan;54(1):159–167. doi: 10.1016/s0022-5320(76)80018-4. [DOI] [PubMed] [Google Scholar]
  20. Miller K. R., Staehelin L. A. Analysis of the thylakoid outer surface. Coupling factor is limited to unstacked membrane regions. J Cell Biol. 1976 Jan;68(1):30–47. doi: 10.1083/jcb.68.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Miller K. R., Staehelin L. A. Fine structure of the chloroplast membranes of Euglena gracilis as revealed by freeze-cleaving and deep-etching techniques. Protoplasma. 1973;77(1):55–78. doi: 10.1007/BF01287292. [DOI] [PubMed] [Google Scholar]
  22. Ojakian G. K., Satir P. Particle movements in chloroplast membranes: quantitative measurements of membrane fluidity by the freeze-fracture technique. Proc Natl Acad Sci U S A. 1974 May;71(5):2052–2056. doi: 10.1073/pnas.71.5.2052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ophir I., Ben-Shaul Y. Structural organization of developing chloroplasts in Euglena. Protoplasma. 1974;80(1):109–127. doi: 10.1007/BF01666354. [DOI] [PubMed] [Google Scholar]
  24. Park R. B., Pfeifhofer A. O. Ultrastructural observations on deep-etched thylakoids. J Cell Sci. 1969 Jul;5(1):299–311. doi: 10.1242/jcs.5.1.299. [DOI] [PubMed] [Google Scholar]
  25. Pinto da Silva P. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation. J Cell Biol. 1972 Jun;53(3):777–787. doi: 10.1083/jcb.53.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Radunz A., Schmid G. H., Menke W. Antibodies to chlorophyll and their reactions with chloroplast preparations. Z Naturforsch B. 1971 May;26(5):435–446. doi: 10.1515/znb-1971-0511. [DOI] [PubMed] [Google Scholar]
  27. Rntzen C. J., Dilley R. A., Crane F. L. A comparison of chloroplast membrane surfaces visualized by freeze-etch and negative staining techniques; and ultrastructural characterization of membrane fractions obtained from digitonin-treated spinach chloroplasts. J Cell Biol. 1969 Oct;43(1):16–31. doi: 10.1083/jcb.43.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shavit N., Avron M. The relation of electron transport and photophosphorylation to conformational changes in chloroplasts. Biochim Biophys Acta. 1967 May 9;131(3):516–525. doi: 10.1016/0005-2728(67)90011-4. [DOI] [PubMed] [Google Scholar]
  29. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  30. Sleytr U. B., Umrath W. a simple device for obtaining complementary fracutre planes at liquid helium temperature in the freeze-etching technique. J Microsc. 1974 Jul;101(Pt 2):187–195. doi: 10.1111/j.1365-2818.1974.tb03881.x. [DOI] [PubMed] [Google Scholar]
  31. Staehelin L. A. Chloroplast membrane structure. Intramembranous particles of different sizes make contact in stacked membrane regions. Biochim Biophys Acta. 1975 Oct 10;408(1):1–11. doi: 10.1016/0005-2728(75)90153-x. [DOI] [PubMed] [Google Scholar]
  32. Torres-Pereira J., Mehlhorn R., Keith A. D., Packer L. Changes in membrane lipid structure of illuminated chloroplasts: studies with spin-labeled and freeze-fractured membranes. Arch Biochem Biophys. 1974 Jan;160(1):90–99. doi: 10.1016/s0003-9861(74)80012-3. [DOI] [PubMed] [Google Scholar]
  33. Unanue E. R., Karnovsky M. J., Engers H. D. Ligand-induced movement of lymphocyte membrane macromolecules. 3. Relationship between the formation and fate of anti-Ig-surface Ig complexes and cell metabolism. J Exp Med. 1973 Mar 1;137(3):675–689. doi: 10.1084/jem.137.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES