Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Nov 1;71(2):497–514. doi: 10.1083/jcb.71.2.497

Periodic variations in the ratio of free to thylakoid-bound chloroplast ribosomes during the cell cycle of Chlamydomonas reinhardtii

PMCID: PMC2109746  PMID: 993261

Abstract

The ratio of free to thylakoid-bound chloroplast ribosomes in Chlamydomonas reinhardtii undergoes periodic changes during the synchronous light-dark cycle. In the light, when there is an increase in the chlorophyll content and synthesis of thylakoid membrane proteins, about 20-30% of the chloroplast ribosomes are bound to the thylakoid membranes. On the other hand, only a few or no bound ribosomes are present in the dark when there is no increase in the chlorophyll content. The ribosome-membrane interaction depends not only on the developmental stage of the cell but also on light. Thus, bound ribosomes were converted to the free variety after cultures at 4 h in the light had been transferred to the dark for 10 min. Conversely, a larger number of chloroplast ribosomes became attached to the membranes after cultures at 4 h in the dark had been illuminated for 10 min. Under normal conditions, when there was slow cooling of the cultures during cell harvesting, chloroplast polysomal runoff occurred in vivo leading to low levels of thylakoid-bound ribosomes. This polysomal runoff could be arrested by either rapid cooling of the cells or the addition of chloramphenicol or erythromycin. Each of these treatments prevented polypeptide chain elongation on chloroplast ribosomes and thus allowed the polyosomes to remain bound to the thylakoids. Addition of lincomycin, an inhibitor of chain initiation on 70S ribosomes, inhibited the assembly of polysome-thylakoid membrane complex in the light. These results support a model in which initiation of mRNA translation begins in the chloroplast stroma, and the polysome subsequently becomes attached to the thylakoid membrane. Upon natural chain termination, the chloroplast ribosomes are released from the membrane into the stroma.

Full Text

The Full Text of this article is available as a PDF (4.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong J. J., Moll B., Surzycki S. J., Levine R. P. Genetic transcription and translation specifying chloroplast components in Chlamydomonas reinhardi. Biochemistry. 1971 Feb 16;10(4):692–701. doi: 10.1021/bi00780a022. [DOI] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BERNSTEIN E. PHYSIOLOGY OF AN OBLIGATE PHOTOAUTOTROPH (CHLAMYDOMONAS MOEWUSII). I. CHARACTERISTICS OF SYNCHRONOUSLY AND RANDOMLY REPRODUCING CELLS AND AN HYPOTHESIS TO EXPLAIN THEIR POPULATION CURVES. J Protozool. 1964 Feb;11:56–74. doi: 10.1111/j.1550-7408.1964.tb01721.x. [DOI] [PubMed] [Google Scholar]
  4. Beck D. P., Levine R. P. Synthesis of chloroplast membrane polypeptides during synchronous growth of Chlamydomonas reinhardtii. J Cell Biol. 1974 Dec;63(3):759–772. doi: 10.1083/jcb.63.3.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975 Dec;67(3):835–851. doi: 10.1083/jcb.67.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blobel G., Potter V. R. Distribution of radioactivity between the acid-soluble pool and the pools of RNA in the nuclear, nonsedimethable and ribosome fractions of rat liver after a single injection of lebaled orotic acid. Biochim Biophys Acta. 1968 Aug 23;166(1):48–57. doi: 10.1016/0005-2787(68)90489-9. [DOI] [PubMed] [Google Scholar]
  7. Bourguignon L. Y., Palade G. E. Incorporation of polypeptides into thylakoid membranes of Chlamydomonas reinhardtii. Cyclic variations. J Cell Biol. 1976 May;69(2):327–344. doi: 10.1083/jcb.69.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bourque D. P., Boynton J. E., Gillham N. W. Studies on the structure and cellular location of various ribosome and ribosomal RNA species in the green alga Chlamydomonas reinhardi. J Cell Sci. 1971 Jan;8(1):153–183. doi: 10.1242/jcs.8.1.153. [DOI] [PubMed] [Google Scholar]
  9. Burns D. J., Cundliffe E. Bacterial-protein synthesis. A novel system for studying antibiotic action in vivo. Eur J Biochem. 1973 Sep 3;37(3):570–574. doi: 10.1111/j.1432-1033.1973.tb03020.x. [DOI] [PubMed] [Google Scholar]
  10. Cattolico R. A., Senner J. W., Jones R. F. Changes in cytoplasmic and chloroplast ribosomal ribonucleic acid during the cell cycle of Chlamydomonas reinhardtii. Arch Biochem Biophys. 1973 May;156(1):58–65. doi: 10.1016/0003-9861(73)90340-8. [DOI] [PubMed] [Google Scholar]
  11. Chen J. L., Wildman S. G. "Free" and membrane-bound ribosomes, and nature of products formed by isolated tobacco chloroplasts incubated for protein synthesis. Biochim Biophys Acta. 1970 May 21;209(1):207–219. doi: 10.1016/0005-2787(70)90677-5. [DOI] [PubMed] [Google Scholar]
  12. Chua N. H., Blobel G., Siekevitz P. Isolation of cytoplasmic and chloroplast ribosomes and their dissociation into active subunits from Chlamydomonas reinhardtii. J Cell Biol. 1973 Jun;57(3):798–814. doi: 10.1083/jcb.57.3.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chua N. H., Blobel G., Siekevitz P., Palade G. E. Attachment of chloroplast polysomes to thylakoid membranes in Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1973 May;70(5):1554–1558. doi: 10.1073/pnas.70.5.1554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Conde M. F., Boynton J. E., Gillham N. W., Harris E. H., Tingle C. L., Wang W. L. Chloroplast genes in Chlamydomonas affecting organelle ribosomes. Genetic and biochemical analysis of analysis of antibiotic-resistant mutants at several gene loci. Mol Gen Genet. 1975 Oct 3;140(3):183–220. doi: 10.1007/BF00334266. [DOI] [PubMed] [Google Scholar]
  15. Eytan G., Ohad I. Biogenesis of chloroplast membranes. VI. Cooperation between cytoplasmic and chloroplast ribosomes in the synthesis of photosynthetic lamellar proteins during the greening process in a mutant of Chlamydomonas reinhardi y-1. J Biol Chem. 1970 Sep 10;245(17):4297–4307. [PubMed] [Google Scholar]
  16. Falk H. Rough thylakoids: polysomes attached to chloroplast membranes. J Cell Biol. 1969 Aug;42(2):582–587. doi: 10.1083/jcb.42.2.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Friedman H., Lu P., Rich A. Temperature control of initiation of protein synthesis in Escherichia coli. J Mol Biol. 1971 Oct 14;61(1):105–121. doi: 10.1016/0022-2836(71)90209-9. [DOI] [PubMed] [Google Scholar]
  19. Harrison T. M., Brownlee G. G., Milstein C. Studies on polysome-membrane interactions in mouse myeloma cells. Eur J Biochem. 1974 Sep 16;47(3):613–620. doi: 10.1111/j.1432-1033.1974.tb03733.x. [DOI] [PubMed] [Google Scholar]
  20. Hoober J. K., Blobel G. Characterization of the chloroplastic and cytoplasmic ribosomes of Chlamydomonas reinhardi. J Mol Biol. 1969 Apr 14;41(1):121–138. doi: 10.1016/0022-2836(69)90130-2. [DOI] [PubMed] [Google Scholar]
  21. Hoober J. K. Sites of synthesis of chloroplast membrane polypeptides in Chlamydomonas reinhardi y-1. J Biol Chem. 1970 Sep 10;245(17):4327–4334. [PubMed] [Google Scholar]
  22. Iwanij V., Chua N. H., Siekevitz P. Synthesis and turnover of ribulose biphosphate carboxylase and of its subunits during the cell cycle of Chlamydomonas reinhardtii. J Cell Biol. 1975 Mar;64(3):572–585. doi: 10.1083/jcb.64.3.572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lodish H. F., Small B. Membrane proteins synthesized by rabbit reticulocytes. J Cell Biol. 1975 Apr;65(1):51–64. doi: 10.1083/jcb.65.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Margulies M. M., Michaels A. Ribosomes bound to chloroplast membranes in Chlamydomonas reinhardtii. J Cell Biol. 1974 Jan;60(1):65–77. doi: 10.1083/jcb.60.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Michaels A., Margulies M. M. Amino acid incorporation into protein by ribosomes bound to chloroplast thylakoid membranes: formation of discrete products. Biochim Biophys Acta. 1975 May 16;390(3):352–362. doi: 10.1016/0005-2787(75)90356-1. [DOI] [PubMed] [Google Scholar]
  26. Oleszko S., Moudrianakis E. N. The visualization of the photosynthetic coupling factor in embedded spinach chloroplasts. J Cell Biol. 1974 Dec;63(3):936–948. doi: 10.1083/jcb.63.3.936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pestka S. Inhibitors of ribosome functions. Annu Rev Microbiol. 1971;25:487–562. doi: 10.1146/annurev.mi.25.100171.002415. [DOI] [PubMed] [Google Scholar]
  28. Tao K. L., Jagendorf A. T. The ratio of free to membrane-bound chloroplast ribosomes. Biochim Biophys Acta. 1973 Nov 14;324(4):518–532. doi: 10.1016/0005-2787(73)90211-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES