Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Nov 1;71(2):680–686. doi: 10.1083/jcb.71.2.680

Gap junctions between the oocyte and companion follicle cells in the mammalian ovary

PMCID: PMC2109751  PMID: 825522

Abstract

Tracer and freeze-fracture electron microscopy of the ovaries of neonatal rat and adult mouse, rat, rabbit, and primate have revealed the presence of gap junctions between follicle cells and oocytes. The junctional connections are found at the ends of follicle cell projections which traverse the zona pellucida and terminate upon microvilli and evenly contoured nonmicrovillar regions of the oolemma. Gap junctions are often seen associated with a macula adherens type of junction. The gap junctions occasionally consist of minute ovoid plaques, but nore frequently appear as rectilinear single- or multiple- row aggregates of particles on the P-face or pits on the E-face. The functional significance of follicle cell-oocyte gap junctions is discussed with respect to the regulation of meiosis and luteinization.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON E., BEAMS H. W. Cytological observations on the fine structure of the guinea pig ovary with special reference to the oogonium, primary oocyte and associated follicle cells. J Ultrastruct Res. 1960 Jun;3:432–446. doi: 10.1016/s0022-5320(60)90021-6. [DOI] [PubMed] [Google Scholar]
  2. Abell C. W., Monahan T. M. The role of adenosine 3',5'-cyclic monophosphate in the regulation of mammalian cell division. J Cell Biol. 1973 Dec;59(3):549–558. doi: 10.1083/jcb.59.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Albertini D. F., Anderson E. The appearance and structure of intercellular connections during the ontogeny of the rabbit ovarian follicle with particular reference to gap junctions. J Cell Biol. 1974 Oct;63(1):234–250. doi: 10.1083/jcb.63.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Amsterdam A., Koch Y., Lieberman M. E., Lindner H. R. Distribution of binding sites for human chorionic gonadotropin in the preovulatory follicle of the rat. J Cell Biol. 1975 Dec;67(3):894–900. doi: 10.1083/jcb.67.3.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Biggers J. D., Whittingham D. G., Donahue R. P. The pattern of energy metabolism in the mouse oöcyte and zygote. Proc Natl Acad Sci U S A. 1967 Aug;58(2):560–567. doi: 10.1073/pnas.58.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
  7. Cho W. K., Stern S., Biggers J. D. Inhibitory effect of dibutyryl cAMP on mouse oocyte maturation in vitro. J Exp Zool. 1974 Mar;187(3):383–386. doi: 10.1002/jez.1401870307. [DOI] [PubMed] [Google Scholar]
  8. Cox R. P., Krauss M. R., Balis M. E., Dancis J. Metabolic cooperation in cell culture: studies of the mechanisms of cell interaction. J Cell Physiol. 1974 Oct;84(2):237–252. doi: 10.1002/jcp.1040840210. [DOI] [PubMed] [Google Scholar]
  9. Donahue R. P., Stern S. Follicular cell support of oocyte maturation: production of pyruvate in vitro. J Reprod Fertil. 1968 Nov;17(2):395–398. doi: 10.1530/jrf.0.0170395. [DOI] [PubMed] [Google Scholar]
  10. Ducibella T., Albertini D. F., Anderson E., Biggers J. D. The preimplantation mammalian embryo: characterization of intercellular junctions and their appearance during development. Dev Biol. 1975 Aug;45(2):231–250. doi: 10.1016/0012-1606(75)90063-9. [DOI] [PubMed] [Google Scholar]
  11. Erickson G. F., Sorensen R. A. In vitro maturation of mouse oocytes isolated from late, middle, and pre-antral graafian follicles. J Exp Zool. 1974 Oct;190(1):123–127. doi: 10.1002/jez.1401900112. [DOI] [PubMed] [Google Scholar]
  12. Gilula N. B., Reeves O. R., Steinbach A. Metabolic coupling, ionic coupling and cell contacts. Nature. 1972 Feb 4;235(5336):262–265. doi: 10.1038/235262a0. [DOI] [PubMed] [Google Scholar]
  13. Johnson R. G., Herman W. S., Preus D. M. Homocellular and heterocellular gap junctions in Limulus: a thin-section and freeze-fracture study. J Ultrastruct Res. 1973 May;43(3):298–312. doi: 10.1016/s0022-5320(73)80040-1. [DOI] [PubMed] [Google Scholar]
  14. Pricam C., Humbert F., Perrelet A., Orci L. Gap junctions in mesangial and lacis cells. J Cell Biol. 1974 Oct;63(1):349–354. doi: 10.1083/jcb.63.1.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Raviola E., Gilula N. B. Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits. J Cell Biol. 1975 Apr;65(1):192–222. doi: 10.1083/jcb.65.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Satir P., Gilula N. B. The fine structure of membranes and intercellular communication in insects. Annu Rev Entomol. 1973;18:143–166. doi: 10.1146/annurev.en.18.010173.001043. [DOI] [PubMed] [Google Scholar]
  17. Sato T. A modified method for lead staining of thin sections. J Electron Microsc (Tokyo) 1968;17(2):158–159. [PubMed] [Google Scholar]
  18. Sheridan J. D. Dye movement and low-resistance junctions between reaggregated embryonic cells. Dev Biol. 1971 Dec;26(4):627–636. doi: 10.1016/0012-1606(71)90145-x. [DOI] [PubMed] [Google Scholar]
  19. WATSON M. L. Staining of tissue sections for electron microscopy with heavy metals. J Biophys Biochem Cytol. 1958 Jul 25;4(4):475–478. doi: 10.1083/jcb.4.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Zamboni L. Fine morphology of the follicle wall and follicle cell-oocyte association. Biol Reprod. 1974 Mar;10(2):125–149. doi: 10.1095/biolreprod10.2.125. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES