Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Nov 1;71(2):341–356. doi: 10.1083/jcb.71.2.341

5-bromodeoxyuridine may alter the differentiative program of the embryonic pancreas

PMCID: PMC2109756  PMID: 136450

Abstract

The thymidine analog, 5-bromodeoxyuridine (BrdU), inhibits the differentiation of the acinar cells of the embryonic rat pancreas, while having little effect on the growth of the tissue. The BrdU- treated pancreas contains elevated alkaline phosphatase and carbonic anhydrase activities, and, unlike the normal pancreas, contains numerous extracellular fluid-filled vacuoles, surrounded by ductlike cells. Both alkaline phosphatase and carbonic anhydrase activities are located preferentially in the ductlike cells lining the vacuoles. The biochemical, morphological, and functional features of these epithelial cells are therefore characteristic of the normal pancreatic duct cell. Thus, in the exocrine pancreas, BrdU seems to alter the normal program of differentiation by favoring the functional duct cells while inhibiting the differentiation of acinar cells.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbott J., Holtzer H. The loss of phenotypic traits by differentiated cells, V. The effect of 5-bromodeoxyuridine on cloned chondrocytes. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1144–1151. doi: 10.1073/pnas.59.4.1144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BIRNBAUM D., HOLLANDER F. Inhibition of pancreatic secretion by the carbonic anhydrase inhibitor 2-acetylamino-1,3,4-thiadiazole-5-sulfonamide, diamox (#6063). Am J Physiol. 1953 Aug;174(2):191–195. doi: 10.1152/ajplegacy.1953.174.2.191. [DOI] [PubMed] [Google Scholar]
  3. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baudhuin P., Beaufay H., Rahman-Li Y., Sellinger O. Z., Wattiaux R., Jacques P., De Duve C. Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem J. 1964 Jul;92(1):179–184. doi: 10.1042/bj0920179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bischoff R., Holtzer H. Inhibition of myoblast fusion after one round of DNA synthesis in 5-bromodeoxyuridine. J Cell Biol. 1970 Jan;44(1):134–150. doi: 10.1083/jcb.44.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Butterworth P. J., Moss D. W. The effect of urea on human alkaline-phosphatase preparations. Enzymologia. 1967 May 31;32(4):267–277. [PubMed] [Google Scholar]
  7. CARO L. G., VAN TUBERGEN R. P., KOLB J. A. High-resolution autoradiography. I. Methods. J Cell Biol. 1962 Nov;15:173–188. doi: 10.1083/jcb.15.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Churg A., Richter W. R. Histochemical distribution of carbonic anhydrase after ligation of the pancreatic duct. Am J Pathol. 1972 Jul;68(1):23–30. [PMC free article] [PubMed] [Google Scholar]
  9. Coleman J. R., Coleman A. W., Hartline E. J. A clonal study of the reversible inhibition of muscle differentiation by the halogenated thymidine analog 5-bromodeoxyuridine. Dev Biol. 1969 Jun;19(6):527–548. doi: 10.1016/0012-1606(69)90036-0. [DOI] [PubMed] [Google Scholar]
  10. Coon H. G., Cahn R. D. Differentiation in vitro: effects of Sephadex fractions of chick embryo extract. Science. 1966 Sep 2;153(3740):1116–1119. doi: 10.1126/science.153.3740.1116. [DOI] [PubMed] [Google Scholar]
  11. Cox R. P., Elson N. A., Tu S. H., Griffin M. J. Hormonal induction of alkaline phosphatase activity by an increase in catalytic efficiency of the enzyme. J Mol Biol. 1971 May 28;58(1):197–215. doi: 10.1016/0022-2836(71)90241-5. [DOI] [PubMed] [Google Scholar]
  12. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  13. DEMPSEY E. W., GREEP R. O. Changes in the distribution and concentration of alkaline phosphatases in tissues of the rat after hypophysectomy or gonadectomy, and after replacement therapy. Endocrinology. 1949 Jan;44(1):88–103. doi: 10.1210/endo-44-1-88. [DOI] [PubMed] [Google Scholar]
  14. Dulaney J. T., Touster O. The solubilization and gel electrophoresis of membrane enzymes by use of detergents. Biochim Biophys Acta. 1970 Jan 6;196(1):29–34. doi: 10.1016/0005-2736(70)90162-8. [DOI] [PubMed] [Google Scholar]
  15. FISHMAN W. H., GREEN S., INGLIS N. I. Organ-specific behavior exhibited by rat intestine and liver alkaline phosphatase. Biochim Biophys Acta. 1962 Aug 13;62:363–375. doi: 10.1016/0006-3002(62)90266-4. [DOI] [PubMed] [Google Scholar]
  16. Filosa S., Pictet R., Rutter W. Positive control of cyclic AMP on mesenchymal factor controlled DNA synthesis in embryonic pancreas. Nature. 1975 Oct 23;257(5528):702–705. doi: 10.1038/257702a0. [DOI] [PubMed] [Google Scholar]
  17. Hansson H. P. Histochemical demonstration of carbonic anhydrase activity. Histochemie. 1967;11(2):112–128. doi: 10.1007/BF00571716. [DOI] [PubMed] [Google Scholar]
  18. Kaplan M. M. Alkaline phosphatase. Gastroenterology. 1972 Mar;62(3):452–468. [PubMed] [Google Scholar]
  19. Koyama H., Ono T. Effect of 5-bromodeoxyuridine on hyaluronic acid synthesis of a clonal hybrid line of mouse and chinese hamster in culture. J Cell Physiol. 1971 Oct;78(2):265–271. doi: 10.1002/jcp.1040780214. [DOI] [PubMed] [Google Scholar]
  20. Koyama H., Ono T. Further studies on the induction of alkaline phosphatase by 5-bromodeoxyuridine in a hybrid line between mouse and Chinese hamster in culture. Biochim Biophys Acta. 1972 May 16;264(3):497–507. doi: 10.1016/0304-4165(72)90013-x. [DOI] [PubMed] [Google Scholar]
  21. Koyama H., Ono T. Induction of alkaline phosphatase by 5-bromodeoxyuridine in a hybrid line between mouse and Chinese hamster in culture. Exp Cell Res. 1971 Dec;69(2):468–470. doi: 10.1016/0014-4827(71)90257-6. [DOI] [PubMed] [Google Scholar]
  22. Lacy P. E., Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967 Jan;16(1):35–39. doi: 10.2337/diab.16.1.35. [DOI] [PubMed] [Google Scholar]
  23. Levine S., Pictet R., Rutter W. J. Control of cell proliferation and cytodifferentiation by a factor reacting with the cell surface. Nat New Biol. 1973 Nov 14;246(150):49–52. doi: 10.1038/newbio246049a0. [DOI] [PubMed] [Google Scholar]
  24. Levitt D., Dorfman A. The irreversible inhibition of differentiation of limb-bud mesenchyme by bromodeoxyuridine. Proc Natl Acad Sci U S A. 1972 May;69(5):1253–1257. doi: 10.1073/pnas.69.5.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. MAREN T. H. A simplified micromethod for the determination of carbonic anhydrase and its inhibitors. J Pharmacol Exp Ther. 1960 Sep;130:26–29. [PubMed] [Google Scholar]
  26. MOOG F. Developmental adaptations of alkaline phosphatases in the small intestine. Fed Proc. 1962 Jan-Feb;21:51–56. [PubMed] [Google Scholar]
  27. MORTON R. K. The purification of aklaline phosphatases of animal tissues. Biochem J. 1954 Aug;57(4):595–603. doi: 10.1042/bj0570595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Manning J. P., Steinetz B. G., Babson A. L., Butler M. C. A simple and reliable method for estimation of alkaline phosphatase in tissue homogenates. Enzymologia. 1966 Nov 30;31(5):309–320. [PubMed] [Google Scholar]
  29. Maren T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967 Oct;47(4):595–781. doi: 10.1152/physrev.1967.47.4.595. [DOI] [PubMed] [Google Scholar]
  30. McALPINE R. J. Alkaline glycerophosphatase in the developing endocrine pancreas of the albino rat. Anat Rec. 1951 Feb;109(2):189–215. doi: 10.1002/ar.1091090205. [DOI] [PubMed] [Google Scholar]
  31. Pekarthy J. M., Short J., Lansing A. I., Lieberman I. Function and control of liver alkaline phosphatase. J Biol Chem. 1972 Mar 25;247(6):1767–1774. [PubMed] [Google Scholar]
  32. Pictet R. L., Clark W. R., Williams R. H., Rutter W. J. An ultrastructural analysis of the developing embryonic pancreas. Dev Biol. 1972 Dec;29(4):436–467. doi: 10.1016/0012-1606(72)90083-8. [DOI] [PubMed] [Google Scholar]
  33. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ridderstap A. S., Bonting S. L. Na+- K+-activated ATPase anc exocrine pancreatic secretion in vitro. Am J Physiol. 1969 Dec;217(6):1721–1727. doi: 10.1152/ajplegacy.1969.217.6.1721. [DOI] [PubMed] [Google Scholar]
  35. Rosen S. Localization of carbonic anhydrase activity in turtle and toad urinary bladder mucosa. J Histochem Cytochem. 1972 Sep;20(9):696–702. doi: 10.1177/20.9.696. [DOI] [PubMed] [Google Scholar]
  36. Rosen S., Oliver J. A., Steinmetz P. R. Urinary acidification and carbonic anhydrase distribution in bladders of Dominican and Colombian toads. J Membr Biol. 1974;15(2):193–205. doi: 10.1007/BF01870087. [DOI] [PubMed] [Google Scholar]
  37. Russell R. G., Monod A., Bonjour J. P., Fleisch H. Relation between alkaline phosphatase and Ca 2+ -ATPase in calcium transport. Nat New Biol. 1972 Nov 22;240(99):126–127. doi: 10.1038/newbio240126a0. [DOI] [PubMed] [Google Scholar]
  38. STOCKDALE F., OKAZAKI K., NAMEROFF M., HOLTZER H. 5-BROMODEOXYURIDINE: EFFECT ON MYOGENESIS IN VITRO. Science. 1964 Oct 23;146(3643):533–535. doi: 10.1126/science.146.3643.533. [DOI] [PubMed] [Google Scholar]
  39. Simon B., Thomas L. HCO 3 -stimulated ATPase from mammalian pancreas. Properties and its arrangement with other enzyme activities. Biochim Biophys Acta. 1972 Nov 2;288(2):434–442. doi: 10.1016/0005-2736(72)90264-7. [DOI] [PubMed] [Google Scholar]
  40. Smith I., Lightstone P. J., Perry J. D. Separation of human tissue alkaline phosphatases by electrophoresis on acrylamide disc gels. Clin Chim Acta. 1968 Mar;19(3):499–505. doi: 10.1016/0009-8981(68)90278-7. [DOI] [PubMed] [Google Scholar]
  41. WANG C. C., WANG K. J., GROSSMAN M. I. Effects of ligation of the pancreatic duct upon the action of secretin and pancreozymin in rabbits with a correlated histological study. Am J Physiol. 1950 Jan;160(1):115-21, illust. doi: 10.1152/ajplegacy.1949.160.1.115. [DOI] [PubMed] [Google Scholar]
  42. WESSELLS N. K. DNA SYNTHESIS, MITOSIS, AND DIFFERENTIATION IN PANCREATIC ACINAR CELLS IN VITRO. J Cell Biol. 1964 Mar;20:415–433. doi: 10.1083/jcb.20.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Walther B. T., Pictet R. L., David J. D., Rutter W. J. On the mechanism of 5-bromodeoxyuridine inhibition of exocrine pancreas differentiation. J Biol Chem. 1974 Mar 25;249(6):1953–1964. [PubMed] [Google Scholar]
  44. Warnes T. W., Timperley W. R., Hine P., Kay G. Pancreatic alkaline phosphatase and a tumour variant. Gut. 1972 Jul;13(7):513–519. doi: 10.1136/gut.13.7.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wilt F. H., Anderson M. The action of 5-bromodeoxyuridine on differentiation. Dev Biol. 1972 Jun;28(2):443–447. doi: 10.1016/0012-1606(72)90026-7. [DOI] [PubMed] [Google Scholar]
  46. Wolf M., Dinwoodie A., Morgan H. G. Comparison of alkaline phosphatase isoenzymes activity using five standard methods. Clin Chim Acta. 1969 Apr;24(1):131–134. doi: 10.1016/0009-8981(69)90149-1. [DOI] [PubMed] [Google Scholar]
  47. Younkin L., Silberberg D. Myelination in developing cultured newborn rat cerebellum inhibited by 5-bromodeoxyuridine. Exp Cell Res. 1973 Feb;76(2):455–458. doi: 10.1016/0014-4827(73)90402-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES