Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Nov 1;71(2):515–534. doi: 10.1083/jcb.71.2.515

Adenosine 3':5'-monophosphate content and actions in the division cycle of synchronized HeLa cells

PMCID: PMC2109764  PMID: 186461

Abstract

The involvement of adenosine 3':5'-monophosphate (cAMP) in the regulation of the cell cycle was studied by determining intracellular fluctuations in cAMP levels in synchronized HeLa cells and by testing the effects of experimentally altered levels on cell cycle traverse. Cyclic AMP levels were lowest during mitosis and were highest during late G-1 or early S phase. These findings were supported by results obtained when cells were accumulated at these points with Colcemid or high levels of thymidine. Additional fluctuations in cAMP levels were observed during S phase. Two specific effects of cAMP on cell cycle traverse were found. Elevation of cAMP levels in S phase or G-2 caused arrest of cells in G-2 for as long as 10 h and lengthened M. However, once cells reached metaphase, elevation of cAMP accelerated the completion of mitosis. Stimulation of mitosis was also observed after addition of CaCl2. The specificity of the effects of cAMP was verified by demonstrating that: (a) intracellular cAMP was increased after exposure to methylisobutylxanthine (MIX) before any observed effects on cycle traverse; (b) submaximal concentrations of MIX potentiated the effects of isoproterenol; and (c) effects of MIX and isoproterenol were mimicked by 8-Br-cAMP. MIX at high concentrations inhibited G-1 traverse, but this effect did not appear to be mediated by cAMP. Isoproterenol slightly stimulated G-1 traverse and partially prevented the MIX-induced delay. Moreover, low concentrations of 8-Br-cAMP (0.10- 100 muM) stimulated G-1 traverse, whereas high concentrations (1 mM) inhibited. Both of these effects were also observed with the control, Br-5'-AMP, at 10-fold lower concentrations.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abell C. W., Monahan T. M. The role of adenosine 3',5'-cyclic monophosphate in the regulation of mammalian cell division. J Cell Biol. 1973 Dec;59(3):549–558. doi: 10.1083/jcb.59.3.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Armelin H. A., Armelin M. C. Regulation of fibroblast growth in culture. Biochem Biophys Res Commun. 1975 Jan 20;62(2):260–267. doi: 10.1016/s0006-291x(75)80132-x. [DOI] [PubMed] [Google Scholar]
  3. BOOTSMA D., BUDKE L., VOS O. STUDIES ON SYNCHRONOUS DIVISION OF TISSUE CULTURE CELLS INITIATED BY EXCESS THYMIDINE. Exp Cell Res. 1964 Jan;33:301–309. doi: 10.1016/s0014-4827(64)81035-1. [DOI] [PubMed] [Google Scholar]
  4. BULLOUGH W. S., LAURENCE E. B. MITOTIC CONTROL BY INTERNAL SECRETION: THE ROLE OF THE CHALONE-ADRENALIN COMPLEX. Exp Cell Res. 1964 Jan;33:176–194. doi: 10.1016/s0014-4827(64)81025-9. [DOI] [PubMed] [Google Scholar]
  5. BUTCHER R. W., SUTHERLAND E. W. Adenosine 3',5'-phosphate in biological materials. I. Purification and properties of cyclic 3',5'-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3',5'-phosphate in human urine. J Biol Chem. 1962 Apr;237:1244–1250. [PubMed] [Google Scholar]
  6. Bailey R. P., Rudert W. A., Short J., Lieberman I. Nucleolar changes in liver before the onset of deoxyribonucleic acid replication. J Biol Chem. 1975 Jun 10;250(11):4305–4309. [PubMed] [Google Scholar]
  7. Browning E. T., Groppi V. E., Jr, Kon C. Papaverine, a potent inhibitor of respiration in C-6 astrocytoma cells. Mol Pharmacol. 1974 Jan;10(1):175–181. [PubMed] [Google Scholar]
  8. Bullough W. S., Laurence E. B. Accelerating and decelerating actions of adrenalin on epidermal mitotic activity. Nature. 1966 May 14;210(5037):715–716. doi: 10.1038/210715a0. [DOI] [PubMed] [Google Scholar]
  9. Burger M. M., Bombik B. M., Breckenridge B. M., Sheppard J. R. Growth control and cyclic alterations of cyclic AMP in the cell cycle. Nat New Biol. 1972 Oct 11;239(93):161–163. doi: 10.1038/newbio239161a0. [DOI] [PubMed] [Google Scholar]
  10. Chlapowski F. J., Kelly L. A., Butcher R. W. Cyclic nucleotides in cultured cells. Adv Cyclic Nucleotide Res. 1975;6:245–338. [PubMed] [Google Scholar]
  11. Coffino P., Gray J. W., Tomkins G. M. Cyclic AMP, a nonessential regulator of the cell cycle. Proc Natl Acad Sci U S A. 1975 Mar;72(3):878–882. doi: 10.1073/pnas.72.3.878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cohen L. S., Studzinski G. P. Correlation between cell enlargement and nucleic acid and protein content of HeLa cells in unbalanced growth produced by inhibitors of DNA synthesis. J Cell Physiol. 1967 Jun;69(3):331–339. doi: 10.1002/jcp.1040690309. [DOI] [PubMed] [Google Scholar]
  13. EVENSEN A., HELDAAS O. THE EFFECT OF ADRENALINE ON THE MITOTIC RATE IN THE EPIDERMIS OF HAIRLESS MICE IN VITRO. Acta Pathol Microbiol Scand. 1964;62:24–28. doi: 10.1111/apm.1964.62.1.24. [DOI] [PubMed] [Google Scholar]
  14. Froehlich J. E., Rachmeler M. Inhibition of cell growth in the G1 phase by adenosine 3', 5'-cyclic monophosphate. J Cell Biol. 1974 Jan;60(1):249–257. doi: 10.1083/jcb.60.1.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Guidotti A., Weiss B., Costa E. Adenosine 3',5'-monophosphate concentrations and isoproterenol-induced synthesis of deoxyribonucleic acid in mouse parotid gland. Mol Pharmacol. 1972 Sep;8(5):521–530. [PubMed] [Google Scholar]
  17. Ho R. J., Sutherland E. W. Formation and release of a hormone antagonist by rat adipocytes. J Biol Chem. 1971 Nov 25;246(22):6822–6827. [PubMed] [Google Scholar]
  18. Insel P. A., Bourne H. R., Coffino P., Tomkins G. M. Cyclic AMP-dependent protein kinase: pivotal role in regulation of enzyme induction and growth. Science. 1975 Nov 28;190(4217):896–898. doi: 10.1126/science.171770. [DOI] [PubMed] [Google Scholar]
  19. Ishikawa E., Ishikawa S., Davis J. W., Sutherland E. W. Determination of guanosine 3',5'-monophosphate in tissues and of guanyl cyclase in rat intestine. J Biol Chem. 1969 Dec 10;244(23):6371–6376. [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. MacManus J. P., Braceland B. M., Youdale T., Whitfield J. F. Adrenergic antagonists, and a possible link between the increase in cyclic adenosine 3',5'-monophosphate and DNA synthesis during liver regeneration. J Cell Physiol. 1973 Oct;82(2):157–164. doi: 10.1002/jcp.1040820204. [DOI] [PubMed] [Google Scholar]
  22. Macmanus J. P., Franks D. J., Youdale T., Braceland B. M. Increases in rat liver cyclic AMP concentrations prior to the initiation of DNA synthesis following partial hepatectomy or hormone infusion. Biochem Biophys Res Commun. 1972 Dec 4;49(5):1201–1207. doi: 10.1016/0006-291x(72)90596-7. [DOI] [PubMed] [Google Scholar]
  23. Millis A. J., Forrest G. A., Pious D. A. Cyclic AMP dependent regulation of mitosis in human lymphoid cells. Exp Cell Res. 1974 Feb;83(2):335–343. doi: 10.1016/0014-4827(74)90347-4. [DOI] [PubMed] [Google Scholar]
  24. Murad F., Rall T. W., Vaughan M. Conditions for the formation, partial purification and assay of an inhibitor of adenosine 3',5'-monophosphate. Biochim Biophys Acta. 1969 Dec 30;192(3):430–445. doi: 10.1016/0304-4165(69)90392-4. [DOI] [PubMed] [Google Scholar]
  25. Nias A. H., Fox M. Synchronization of mammalian cells with respect to the mitotic cycle. Cell Tissue Kinet. 1971 Jul;4(4):375–398. doi: 10.1111/j.1365-2184.1971.tb01547.x. [DOI] [PubMed] [Google Scholar]
  26. Otten J., Johnson G. S., Pastan I. Cyclic AMP levels in fibroblasts: relationship to growth rate and contact inhibition of growth. Biochem Biophys Res Commun. 1971 Sep;44(5):1192–1198. doi: 10.1016/s0006-291x(71)80212-7. [DOI] [PubMed] [Google Scholar]
  27. Otten J., Johnson G. S., Pastan I. Regulation of cell growth by cyclic adenosine 3',5'-monophosphate. Effect of cell density and agents which alter cell growth on cyclic adenosine 3',5'-monophosphate levels in fibroblasts. J Biol Chem. 1972 Nov 10;247(21):7082–7087. [PubMed] [Google Scholar]
  28. Pardee A. B. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1286–1290. doi: 10.1073/pnas.71.4.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pastan I. H., Johnson G. S., Anderson W. B. Role of cyclic nucleotides in growth control. Annu Rev Biochem. 1975;44:491–522. doi: 10.1146/annurev.bi.44.070175.002423. [DOI] [PubMed] [Google Scholar]
  30. Pawelek J., Halaban R., Christie G. Melanoma cells which require cyclic AMP for growth. Nature. 1975 Dec 11;258(5535):539–540. doi: 10.1038/258539a0. [DOI] [PubMed] [Google Scholar]
  31. Prasad K. N., Mandal B. Catechol-o-methyl-transferase activity in dibutyryl cyclic AMP, prostaglandin and x-ray -induced differentiated neuroblastoma cell culture. Exp Cell Res. 1972 Oct;74(2):532–534. doi: 10.1016/0014-4827(72)90412-0. [DOI] [PubMed] [Google Scholar]
  32. Prescott D. M. Regulation of cell reproduction. Cancer Res. 1968 Sep;28(9):1815–1820. [PubMed] [Google Scholar]
  33. Radley J. M., Hodgson G. S. Effect of isoprenaline on cells in different phases of the mitotic cycle. Exp Cell Res. 1971 Nov;69(1):148–160. doi: 10.1016/0014-4827(71)90320-x. [DOI] [PubMed] [Google Scholar]
  34. Rao P. N., Johnson R. T. Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature. 1970 Jan 10;225(5228):159–164. doi: 10.1038/225159a0. [DOI] [PubMed] [Google Scholar]
  35. Rasmussen H. Cell communication, calcium ion, and cyclic adenosine monophosphate. Science. 1970 Oct 23;170(3956):404–412. doi: 10.1126/science.170.3956.404. [DOI] [PubMed] [Google Scholar]
  36. Rein A., Carchman R. A., Johnson G. S., Pastan I. Simian virus 40 rapidly lowers cAMP levels in mouse cells. Biochem Biophys Res Commun. 1973 Jun 8;52(3):899–904. doi: 10.1016/0006-291x(73)91022-x. [DOI] [PubMed] [Google Scholar]
  37. Rozengurt E., Jimenez de Asua L. Role of cyclic 3':5'-adenosine monophosphate in the early transport changes induced by serum and insulin in quiescent fibroblasts. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3609–3612. doi: 10.1073/pnas.70.12.3609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Russell D. H., Stambrook P. J. Cell cycle specific fluctuations in adenosine 3':5'-cyclic monophosphate and polyamines of Chinese hamster cells. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1482–1486. doi: 10.1073/pnas.72.4.1482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Seifert W. E., Rudland P. S. Possible involvement of cyclic GMP in growth control of cultured mouse cells. Nature. 1974 Mar 8;248(5444):138–140. doi: 10.1038/248138a0. [DOI] [PubMed] [Google Scholar]
  40. Seifert W., Rudland P. S. Cyclic nucleotides and growth control in cultured mouse cells: correlation of changes in intracellular 3':5' cGMP concentration with a specific phase of the cell cycle. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4920–4924. doi: 10.1073/pnas.71.12.4920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sheppard J. R. Difference in the cyclic adenosine 3',5'-monophosphate levels in normal and transformed cells. Nat New Biol. 1972 Mar 1;236(61):14–16. doi: 10.1038/newbio236014a0. [DOI] [PubMed] [Google Scholar]
  42. Sheppard J. R., Prescott D. M. Cyclic AMP levels in synchronized mammalian cells. Exp Cell Res. 1972 Nov;75(1):293–296. doi: 10.1016/0014-4827(72)90554-x. [DOI] [PubMed] [Google Scholar]
  43. Smith J. A., Martin L. Do cells cycle? Proc Natl Acad Sci U S A. 1973 Apr;70(4):1263–1267. doi: 10.1073/pnas.70.4.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. TERASIMA T., TOLMACH L. J. Growth and nucleic acid synthesis in synchronously dividing populations of HeLa cells. Exp Cell Res. 1963 Apr;30:344–362. doi: 10.1016/0014-4827(63)90306-9. [DOI] [PubMed] [Google Scholar]
  45. Thrower S., Ord M. G. Hormonal control of liver regeneration. Biochem J. 1974 Nov;144(2):361–369. doi: 10.1042/bj1440361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Voorhees J. J., Duell E. A., Bass L. J., Harrell E. R. Role of cyclic AMP in the control of epidermal cell growth and differentiation. Natl Cancer Inst Monogr. 1973 Jul;38:47–59. [PubMed] [Google Scholar]
  47. Walters R. A., Gurley L. R., Tobey R. A. Effects of caffeine on radiation-induced phenomena associated with cell-cycle traverse of mammalian cells. Biophys J. 1974 Feb;14(2):99–118. doi: 10.1016/S0006-3495(74)70002-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yasumasu I., Fujiwara A., Ishida K. Periodic change in the content of adenosine 3'5'-cyclic monophosphate with close relation to the cycle of cleavage in the sea urchin egg. Biochem Biophys Res Commun. 1973 Sep 18;54(2):628–632. doi: 10.1016/0006-291x(73)91469-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES