Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Dec 1;71(3):715–726. doi: 10.1083/jcb.71.3.715

Hemoglobin switching in sheep and goats. VI. Commitment of erythroid colony-forming cells to the synthesis of betaC globin

PMCID: PMC2109775  PMID: 993267

Abstract

Bone marrow from mature goats and sheep was cultured in plasma clots, and three erythropoietin (ESF)-dependent responses-growth (colony formation), differentiation (globin production), and initiation of hemoglobin C (alpha2beta2C) synthesis--were quantitated. ESF concentrations below 0.01 U/ml supported colony growth and adult hemoglobin production in cultures of goat marrow, while maximal hemoglobin C synthesis (70%), as measured between 72 and 96 h in culture, required a 100-fold higher ESF concentration. Sheep marrow was cultured in a medium enriched to enhance growth and to permit complete maturation of colonies. These colonies active in hemoglobin synthesis between 24 and 96 h produced mainly adult hemoglobin, and only between 96 and 120 h did sheep colonies develop which produced mainly hemoglobin C (up to 70%). A similar heterogeneity may exist among goat colonies. Thus, when goat bone marrow was fractionated by unit gravity sedimentation, more hemoglobin C synthesis was observed in colonies derived from cells of intermediate sedimentation velocity than in colonies derived from the most rapidly sedimenting cells. Brief exposure of sheep (in vivo) and goat (in vitro) bone marrow to a high ESF concentration committed precursor cells to the generation of colonies which, even at low ESF concentration, produced hemoglobin C. Committment to hemoglobin phenotype appears to be an early and probably irreversible event in the development of an erythroid cell.

Full Text

The Full Text of this article is available as a PDF (1,012.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson J. W., Stamatoyannopoulos G. Activation of hemoglobin C synthesis in sheep marrow culture. Science. 1973 Apr 20;180(4083):310–312. doi: 10.1126/science.180.4083.310. [DOI] [PubMed] [Google Scholar]
  2. Barker J. E., Anderson W. F., Nienhuis A. W. Hemoglobin switching in sheep and goats. V. Effect of erythropoietin concentration on in vitro erythroid colony growth and globin synthesis. J Cell Biol. 1975 Mar;64(3):515–527. doi: 10.1083/jcb.64.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barker J. E., Last J. A., Adams S. L., Nienhuis A. W., Anderson W. F. Hemogloblin switching in sheep and goats: erythropoietin-dependent synthesis of hemoglobin C in goat bone-marrow cultures. Proc Natl Acad Sci U S A. 1973 Jun;70(6):1739–1743. doi: 10.1073/pnas.70.6.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Denton M. J., Arnstein H. R. Characterization of developing adult mammalian erythroid cells separated by velocity sedimentation. Br J Haematol. 1973 Jan;24(1):7–17. doi: 10.1111/j.1365-2141.1973.tb05722.x. [DOI] [PubMed] [Google Scholar]
  5. Garrick M. D., Reichlin M., Mattioli M., Manning R. The anemia-induced reversible switch from hemoglobin A to hemoglobin C in caprine ruminants: immunochemical evidence that both hemoglobins are found in the same cell. Dev Biol. 1973 Jan;30(1):1–12. doi: 10.1016/0012-1606(73)90043-2. [DOI] [PubMed] [Google Scholar]
  6. Gregory C. J., McCulloch E. A., Till J. E. Erythropoietic progenitors capable of colony formation in culture: state of differentiation. J Cell Physiol. 1973 Jun;81(3):411–420. doi: 10.1002/jcp.1040810313. [DOI] [PubMed] [Google Scholar]
  7. Huisman T. H., Lewis J. P., Blunt M. H., Adams H. R., Miller A., Dozy A. M., Boyd E. M. Hemoglobin C in newborn sheep and goats: a possible explanation for its function and biosynthesis. Pediatr Res. 1969 May;3(3):189–198. doi: 10.1203/00006450-196905000-00001. [DOI] [PubMed] [Google Scholar]
  8. Iscove N. N., Sieber F. Erythroid progenitors in mouse bone marrow detected by macroscopic colony formation in culture. Exp Hematol. 1975 Jan;3(1):32–43. [PubMed] [Google Scholar]
  9. Iscove N. N., Sieber F., Winterhalter K. H. Erythroid colony formation in cultures of mouse and human bone marrow: analysis of the requirement for erythropoietin by gel filtration and affinity chromatography on agarose-concanavalin A. J Cell Physiol. 1974 Apr;83(2):309–320. doi: 10.1002/jcp.1040830218. [DOI] [PubMed] [Google Scholar]
  10. McCool D., Miller R. J., Painter R. H., Bruce W. R. Erythropoietin sensitivity of rat bone marrow cells separated by velocity sedimentation. Cell Tissue Kinet. 1970 Jan;3(1):55–65. doi: 10.1111/j.1365-2184.1970.tb00252.x. [DOI] [PubMed] [Google Scholar]
  11. Miller R. G., Phillips R. A. Separation of cells by velocity sedimentation. J Cell Physiol. 1969 Jun;73(3):191–201. doi: 10.1002/jcp.1040730305. [DOI] [PubMed] [Google Scholar]
  12. Nienhuis A. W., Bunn H. F. Hemoglobin switching in sheep and goats: occurrence of hemoglobins A and C in the same red cell. Science. 1974 Sep 13;185(4155):946–948. doi: 10.1126/science.185.4155.946. [DOI] [PubMed] [Google Scholar]
  13. Stephenson J. R., Axelrad A. A., McLeod D. L., Shreeve M. M. Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1542–1546. doi: 10.1073/pnas.68.7.1542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Stephenson J. R., Axelrad A. A. Separation of erythropoietin-sensitive cells from hemopoietic spleen colony-forming stem cells of mouse fetal liver by unit gravity sedimentation. Blood. 1971 Apr;37(4):417–427. [PubMed] [Google Scholar]
  15. Tepperman A. D., Curtis J. E., McCulloch E. A. Erythropietic colonies in cultures of human marrow. Blood. 1974 Nov;44(5):659–669. [PubMed] [Google Scholar]
  16. Thurmon T. F., Boyer S. H., Crosby E. F., Shepard M. K., Noyes A. N., Stohlman F., Jr Hemoglobin switching in nonanemic sheep. 3. Evidence for presumptive identity between the A--C factor and erythropoietin. Blood. 1970 Nov;36(5):598–606. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES