Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Dec 1;71(3):727–734. doi: 10.1083/jcb.71.3.727

Stimulation of clonal growth of normal fibroblasts with substrata coated with basic polymers

PMCID: PMC2109778  PMID: 993268

Abstract

Improved media have reduced the amount of serum protein required for clonal growth of normal human and chicken fibroblast-like cells. In the presence of limiting amounts of serum protein, attachment of colonies to tissue culture plastic surfaces is weak. Treatment of the culture surface with polylysine or other basic polymers causes the cells to adhere much more tightly. Growth is also improved on the surfaces treated with basic polymers, and further reductions in the concentration of serum as possible. At sufficiently low protein concentrations, growth of some types of cells is totally dependent on the use of a treated surface. Several different types of normal human and chicken fibroblast-like cells show improved growth on polylysine- coated surfaces, but no improvement was obtained in growth of a line of SV-40 transformed WI-38 cells. Acidic and neutral polymers are generally inactive. Collagen and gelatin improve growth slightly, but the effect is much less than that obtained with basic polymers. Both natural and synthetic polymers with an excess of basic groups are active, including histone, polyarginine, polyhistidine, polylysine, polyornithine, and protamine. The only critical requirement appears to be a polymer that carries a positive charge at a physiological pH.

Full Text

The Full Text of this article is available as a PDF (943.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Culp L. A., Buniel J. F. Substrate-attached serum and cell proteins in adhesion of mouse fibroblasts. J Cell Physiol. 1976 May;88(1):89–106. doi: 10.1002/jcp.1040880111. [DOI] [PubMed] [Google Scholar]
  2. Culp L. A. Substrate-attached glycoproteins mediating adhesion of normal and virus-transformed mouse fibroblasts. J Cell Biol. 1974 Oct;63(1):71–83. doi: 10.1083/jcb.63.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. EASTY G. C., EASTY D. M., AMBROSE E. J. Studies of cellular adhesiveness. Exp Cell Res. 1960 Apr;19:539–548. doi: 10.1016/0014-4827(60)90062-8. [DOI] [PubMed] [Google Scholar]
  4. Fisher H. W., Puck T. T., Sato G. MOLECULAR GROWTH REQUIREMENTS OF SINGLE MAMMALIAN CELLS: THE ACTION OF FETUIN IN PROMOTING CELL ATTACHMENT TO GLASS. Proc Natl Acad Sci U S A. 1958 Jan;44(1):4–10. doi: 10.1073/pnas.44.1.4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grinnell F. Studies on the mechanism of cell attachment to a substratum: evidence for three biochemically distinct processes. Arch Biochem Biophys. 1974 Jan;160(1):304–310. doi: 10.1016/s0003-9861(74)80038-x. [DOI] [PubMed] [Google Scholar]
  6. LIEBERMAN I., OVE P. A protein growth factor for mammalian cells in culture. J Biol Chem. 1958 Sep;233(3):637–642. [PubMed] [Google Scholar]
  7. Macieira-Coelho A., Avrameas S. Modulation of cell behavior in vitro by the substratum in fibroblastic and leukemic mouse cell lines. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2469–2473. doi: 10.1073/pnas.69.9.2469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Martin G. R., Rubin H. Effects of cell adhesion of the substratum on the growth of chick embryo fibroblasts. Exp Cell Res. 1974 Apr;85(2):319–333. doi: 10.1016/0014-4827(74)90133-5. [DOI] [PubMed] [Google Scholar]
  9. Mazia D., Schatten G., Sale W. Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J Cell Biol. 1975 Jul;66(1):198–200. doi: 10.1083/jcb.66.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McKeehan W. L., Hamilton W. G., Ham R. G. Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2023–2027. doi: 10.1073/pnas.73.6.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Paul D., Henahan M., Walter S. Changes in growth control and growth requirements associated with neoplastic transformation in vitro. J Natl Cancer Inst. 1974 Nov;53(5):1499–1503. doi: 10.1093/jnci/53.5.1499. [DOI] [PubMed] [Google Scholar]
  12. RAPPAPORT C., POOLE J. P., RAPPAPORT H. P. Studies on properties of surfaces required for growth of mammalian cells in synthetic medium. I. The HeLa cell. Exp Cell Res. 1960 Sep;20:465–479. doi: 10.1016/0014-4827(60)90117-8. [DOI] [PubMed] [Google Scholar]
  13. ROSENBERG M. D. Microexudates from cells grown in tissue culture. Biophys J. 1960 Nov;1:137–159. doi: 10.1016/s0006-3495(60)86881-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Revel J. P., Wolken K. Electronmicroscope investigations of the underside of cells in culture. Exp Cell Res. 1973 Mar 30;78(1):1–14. doi: 10.1016/0014-4827(73)90031-1. [DOI] [PubMed] [Google Scholar]
  15. Ryser H. J., Hancock R. Histones and basic polyamino acids stimulate the uptake of albumin by tumor cells in culture. Science. 1965 Oct 22;150(3695):501–503. doi: 10.1126/science.150.3695.501. [DOI] [PubMed] [Google Scholar]
  16. Schell P. L. Uptake of polynucleotides by mammalian cells. XIV. Stimulation of the uptake of polynucleotides by poly(L-lysine). Biochim Biophys Acta. 1974 Mar 27;340(3):323–333. doi: 10.1016/0005-2787(74)90277-9. [DOI] [PubMed] [Google Scholar]
  17. Stoker M. G. Role of diffusion boundary layer in contact inhibition of growth. Nature. 1973 Nov 23;246(5430):200–203. doi: 10.1038/246200a0. [DOI] [PubMed] [Google Scholar]
  18. Stoker M., O'Neill C., Berryman S., Waxman V. Anchorage and growth regulation in normal and virus-transformed cells. Int J Cancer. 1968 Sep 15;3(5):683–693. doi: 10.1002/ijc.2910030517. [DOI] [PubMed] [Google Scholar]
  19. TAYLOR A. C. Attachment and spreading of cells in culture. Exp Cell Res. 1961;Suppl 8:154–173. doi: 10.1016/0014-4827(61)90346-9. [DOI] [PubMed] [Google Scholar]
  20. Terry A. H., Culp L. A. Substrate-attached glycoproteins from normal and virus-transformed cells. Biochemistry. 1974 Jan 29;13(3):414–425. doi: 10.1021/bi00700a004. [DOI] [PubMed] [Google Scholar]
  21. WEISS L. Studies on cellular adhesion in tissue culture. I. The effect of serum. Exp Cell Res. 1959 Jun;17(3):499–507. doi: 10.1016/0014-4827(59)90070-9. [DOI] [PubMed] [Google Scholar]
  22. Wallis C., Ver B., Melnick J. L. The role of serum and fetuin in the growth of monkey kidney cells in culture. Exp Cell Res. 1969 Dec;58(2):271–282. doi: 10.1016/0014-4827(69)90505-9. [DOI] [PubMed] [Google Scholar]
  23. Weiss L., Poste G., MacKearnin A., Willett K. Growth of mammalian cells on substrates coated with cellular microexudates. I. Effect on cell growth at low population densities. J Cell Biol. 1975 Jan;64(1):135–145. doi: 10.1083/jcb.64.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Whitfield J. F., Perris A. D., Youdale T. The role of calcium in the mitotic stimulation of rat thymocytes by detergents, agmatine and poly-L-lysine. Exp Cell Res. 1968 Oct;53(1):155–165. doi: 10.1016/0014-4827(68)90363-7. [DOI] [PubMed] [Google Scholar]
  25. Witkowski J. A., Brighton W. D. Influence of serum on attachment of tissue cells to glass surfaces. Exp Cell Res. 1972 Jan;70(1):41–48. doi: 10.1016/0014-4827(72)90179-6. [DOI] [PubMed] [Google Scholar]
  26. Yaoi Y., Kanaseki T. Role of microexudate carpet in cell division. Nature. 1972 Jun 2;237(5353):283–285. doi: 10.1038/237283a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES