Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Dec 1;71(3):951–956. doi: 10.1083/jcb.71.3.951

Effects of 5-bromodeoxyuridine on the ACTH-dependent mitochondrial biogenesis in cortical cells of fetal rat adrenals in tissue culture

PMCID: PMC2109781  PMID: 186465

Abstract

Cortical cells of fetal rat adrenals in tissue culture were treated with 5-bromodeoxyuridine (BrdU) during their proliferative phase and during ACTH stimulation when nuclear DNA synthesis has almost ceased. Pretreatment with 0.5 mug/ml/day of BrdU inhibited the ACTH-induced differentiation of cortical cells as well as the secretion of corticosterone and 18-OH-deoxycorticosterone (18-OHDOC). When nuclear DNA synthesis was suppressed and mitochondrial DNA synthesis was stimulated by ACTH BrdU addition (30 mug/ml/day) permitted normal untrastructural differentiation of cortical cells, except that the development of mitochondrial inner membranes was inhibited. Simultaneously mitochondrial inner membranes was inhibited. Simultaneously mitochondrial 11beta- and 18-hydroxylations were strongly inhibited while cytoplasmic 21-hydroxylation was not affected.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gross N. J., Rabinowitz M. Synthesis of new strands of mitochondrial and nuclear deoxyribonucleic acid by semiconservative replication. J Biol Chem. 1969 Mar 25;244(6):1563–1566. [PubMed] [Google Scholar]
  2. Kahri A. I. Inhibition by cycloheximide of ACTH-induced internal differentiation of mitochondria in cortical cells in tissue cultures of fetal rat adrenals. Anat Rec. 1971 Sep;171(1):53–79. doi: 10.1002/ar.1091710105. [DOI] [PubMed] [Google Scholar]
  3. Kahri A. I. Selective inhibition by chloramphenicol of ACTH-induced reorganization of inner mitochondrial membranes in fetal adrenal cortical cells in tissue cultures. Am J Anat. 1970 Feb;127(2):103–129. doi: 10.1002/aja.1001270202. [DOI] [PubMed] [Google Scholar]
  4. Levitt D., Dorfman A. The irreversible inhibition of differentiation of limb-bud mesenchyme by bromodeoxyuridine. Proc Natl Acad Sci U S A. 1972 May;69(5):1253–1257. doi: 10.1073/pnas.69.5.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Rutter W. J., Pictet R. L., Morris P. W. Toward molecular mechanisms of developmental processes. Annu Rev Biochem. 1973;42:601–646. doi: 10.1146/annurev.bi.42.070173.003125. [DOI] [PubMed] [Google Scholar]
  6. Schwartz S. A., Kirsten W. H. Distribution of 5-bromodeoxyuridine in the DNA of rat embryo cells. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3570–3574. doi: 10.1073/pnas.71.9.3570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. WESSELLS N. K. DNA SYNTHESIS, MITOSIS, AND DIFFERENTIATION IN PANCREATIC ACINAR CELLS IN VITRO. J Cell Biol. 1964 Mar;20:415–433. doi: 10.1083/jcb.20.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Walther B. T., Pictet R. L., David J. D., Rutter W. J. On the mechanism of 5-bromodeoxyuridine inhibition of exocrine pancreas differentiation. J Biol Chem. 1974 Mar 25;249(6):1953–1964. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES