Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Dec 1;71(3):781–794. doi: 10.1083/jcb.71.3.781

Specific changes in the synthesis of mitochondrial DNA in chick embryo fibroblasts transformed by Rous sarcoma viruses

PMCID: PMC2109783  PMID: 186463

Abstract

In chick-embryo fibroblasts infected with the Schmidt-Ruppin strain of Rous sarcoma virus, subgroup A (wild type), or with a thermosensitive mutant of this virus, T5, the rates of mitochondrial DNA synthesis differ in cells that exhibit normal and malignant phenotypes. In wild type virus-infected cells grown at 36 or 41 degrees C, morphological transformation is expressed, the rate of 2-deoxy-D-[3H]glucose uptake is stimulated, and mitochondrial DNA synthesis in vivo is stimulated three- to fivefold over that in uninfected cells. In T5-infected cells these changes occur only at the permissive temperature (36 degrees C); a shift to the nonpermissive temperature (41 degrees C) causes the reversal of these effects, and the specific activity of purified mitochondrial DNA is characteristic of that from uninfected cells. In contrast, the specific activities of nuclear DNA purified from cells maximally transformed under the permissive conditions do not differ between wild type-infected and uninfected with the T5 virus. In parallel experiments with isolated mitochondria, the rate of mtDNA synthesis in vitro is again greater in mitochondria isolated from transformed cells. In addition, mitochondrial DNA synthesis in vitro in mitochondria from nontransformed and virus-transformed cells exhibits differential sensitivity to inhibition by mercaptoethanol. Furthermore, the ntDNAP polymerase activity in mitochondrial extracts prepared from cells with transformed phenotypes is about sevenfold higher than in extracts from cells with nontransformed phenotypes.

Full Text

The Full Text of this article is available as a PDF (1,019.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APOSHIAN H. V., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. IX. The polymerase formed after T2 bacteriophage infection of Escherichia coli: a new enzyme. J Biol Chem. 1962 Feb;237:519–525. [PubMed] [Google Scholar]
  2. Bosmann H. B., Myers M. W., Morgan H. R. Synthesis of DNA, RNA protein and glycoprotein in mitochondria of cells transformed with Rous sarcoma viruses. Biochem Biophys Res Commun. 1974 Jan;56(1):75–83. doi: 10.1016/s0006-291x(74)80317-7. [DOI] [PubMed] [Google Scholar]
  3. D'Agostino M. A., Lowry K. M., Kalf G. F. DNA biosynthesis in rat liver mitochondria. Inhibition by sulfhydryl compounds and stimulation by cytoplasmic proteins. Arch Biochem Biophys. 1975 Feb;166(2):400–416. doi: 10.1016/0003-9861(75)90403-8. [DOI] [PubMed] [Google Scholar]
  4. Gerhardt B., Beevers H. Influence of sucrose on protein determination by the Lowry procedure. Anal Biochem. 1968 Aug;24(2):337–339. doi: 10.1016/0003-2697(68)90187-5. [DOI] [PubMed] [Google Scholar]
  5. Kára J., Dvorák M., Cerná H. Presence of viral RNA-instructed DNA polymerase in the oncogenic subviral particles (virosomes) isolated from the mitochondria of rous sarcoma cells. FEBS Lett. 1972 Sep 1;25(1):33–37. doi: 10.1016/0014-5793(72)80447-2. [DOI] [PubMed] [Google Scholar]
  6. Kára J., Mach O., Cerná H. Replication of Rous sarcoma virus and the biosynthesis of the oncogenic subviral ribonucleoprotein particles ("virosomes") in the mitochondria isolated from Rous sarcoma tissue. Biochem Biophys Res Commun. 1971 Jul 2;44(1):162–169. doi: 10.1016/s0006-291x(71)80173-0. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Levine A. J. Induction of mitochondrial DNA synthesis in monkey cells infected by simian virus 40 and (or) treated with calf serum. Proc Natl Acad Sci U S A. 1971 Apr;68(4):717–720. doi: 10.1073/pnas.68.4.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Levinson W. Fragmentation of the nucleus in Rous sarcoma virus-infected chick embryo cells. II. Structural and metabolic studies. J Natl Cancer Inst. 1970 Jan;44(1):151–158. [PubMed] [Google Scholar]
  10. Levinson W. Fragmentation of the nucleus in Rous sarcoma virus-infected chick embryo cells. Virology. 1967 May;32(1):74–83. doi: 10.1016/0042-6822(67)90254-1. [DOI] [PubMed] [Google Scholar]
  11. Martin G. S. Rous sarcoma virus: a function required for the maintenance of the transformed state. Nature. 1970 Sep 5;227(5262):1021–1023. doi: 10.1038/2271021a0. [DOI] [PubMed] [Google Scholar]
  12. Martin G. S., Venuta S., Weber M., Rubin H. Temperature-dependent alterations in sugar transport in cells infected by a temperature-sensitive mutant of Rous sarcoma virus. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2739–2741. doi: 10.1073/pnas.68.11.2739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Morley C. G., Kingdon H. S. Use of 3 H-thymidine for measurement of DNA synthesis in rat liver--a warning. Anal Biochem. 1972 Jan;45(1):298–305. doi: 10.1016/0003-2697(72)90030-9. [DOI] [PubMed] [Google Scholar]
  14. Nass M. M. Abnormal DNA patterns in animal mitochondria: ethidium bromide-induced breakdown of closed circular DNA and conditions leading to oligomer accumulation. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1926–1933. doi: 10.1073/pnas.67.4.1926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nass M. M., Buck C. A. Comparative hybridization of mitochondrial and cytoplasmic aminoacyl transfer RNA with mitochondrial DNA from rat liver. Proc Natl Acad Sci U S A. 1969 Feb;62(2):506–513. doi: 10.1073/pnas.62.2.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nass M. M. Differential effects of ethidium bromide on mitochondrial and nuclear DNA synthesis in vivo in cultured mammalian cells. Exp Cell Res. 1972 May;72(1):211–222. doi: 10.1016/0014-4827(72)90583-6. [DOI] [PubMed] [Google Scholar]
  17. Nass M. M. Differential methylation of mitochondrial and nuclear DNA in cultured mouse, hamster and virus-transformed hamster cells. In vivo and in vitro methylation. J Mol Biol. 1973 Oct 15;80(1):155–175. doi: 10.1016/0022-2836(73)90239-8. [DOI] [PubMed] [Google Scholar]
  18. Nass M. M. Temperature-dependent formation of dimers and oligomers of mitochondrial DNA in cells transformed by a thermosensitive mutant of Rous sarcoma virus. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3739–3743. doi: 10.1073/pnas.70.12.3739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Radsak K. D., Freise H. W. Stimulation of mitochondrial DNA synthesis in HeLa cells by Herpes simplex virus. Life Sci II. 1972 Jul 22;11(14):717–724. doi: 10.1016/0024-3205(72)90055-0. [DOI] [PubMed] [Google Scholar]
  20. Radsak K., Albring M. Stimulation of mitochondrial DNA synthesis as an early function of herpes simplex virus. FEBS Lett. 1974 Aug 25;44(2):136–140. doi: 10.1016/0014-5793(74)80711-8. [DOI] [PubMed] [Google Scholar]
  21. Rubin H. A VIRUS IN CHICK EMBRYOS WHICH INDUCES RESISTANCE IN VITRO TO INFECTION WITH ROUS SARCOMA VIRUS. Proc Natl Acad Sci U S A. 1960 Aug;46(8):1105–1119. doi: 10.1073/pnas.46.8.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schincariol A. L., Joklik W. K. Early synthesis of virus-specific RNA and DNA in cells rapidly transformed with Rous sarcoma virus. Virology. 1973 Dec;56(2):532–548. doi: 10.1016/0042-6822(73)90056-1. [DOI] [PubMed] [Google Scholar]
  23. Soslau G., Nass M. M. Stimulation of 2-deoxy-d-glucose transport in control and virus-transformed cells by ethidium bromide. J Cell Physiol. 1975 Oct;86(2 Pt 1):269–280. doi: 10.1002/jcp.1040860211. [DOI] [PubMed] [Google Scholar]
  24. Vesco C., Basilico C. Induction of mitochondrial DNA synthesis by polyoma virus. Nature. 1971 Jan 29;229(5283):336–338. doi: 10.1038/229336a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES