Abstract
The relationship of ribosomal RNA (rRNA) synthesis to nucleolar ultrastructure was studied in partial nucleolar mutants of Xenopus laevis. These mutations are the result of a partial deletion of rRNA genes and therefore alow studies on nucleolar structure and function without using drugs that inhibit rRNA synthesis. Ultrastructural studies demonstrated that normal embryos have reticulated nucleoli that are composed of a loose meshwork of granules and fibrils and a typical nucleolonema. In contrast, partial nucleolar mutants in which rRNA synthesis is reduced to less than 50% of the normal rate have compact nucleoli and nucleolus-like bodies. The compace nucleoli contain granules and fibrils, but they are segregated into distinct regions, and a nucleolonema is never seen. Since other species of RNA are synthesized normally by partial nucleolar mutants, these results demonstrate that nucleolar segragation is related specifically to a reduction in rRNA synthesis. The nucleolus-like bodies are composed mainly of fibrils,and the number of such bodies are composed mainly of fibrils, and the number of such bodies present in the different nucleolar mutants is inversely related to the relative rate of rRNA synthesis. Although the partial nucleolar organizers produce segregated nucleoli in these mutants, they organize morphologically normal, but smaller, nucleoli in heterozygous embryos. Alternative explanations to account for these results are discussed.
Full Text
The Full Text of this article is available as a PDF (3.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTH L. G., BARTH L. J. Differentiation of cells of the Rana pipiens gastrula in unconditioned medium. J Embryol Exp Morphol. 1959 Jun;7:210–222. [PubMed] [Google Scholar]
- BROWN D. D., LITTNA E. RNA SYNTHESIS DURING THE DEVELOPMENT OF XENOPUS LAEVIS, THE SOUTH AFRICAN CLAWED TOAD. J Mol Biol. 1964 May;8:669–687. doi: 10.1016/s0022-2836(64)80116-9. [DOI] [PubMed] [Google Scholar]
- Brown D. D., Gurdon J. B. Size distribution and stability of DNA-like RNA synthesized during development of anucleolate embryos of Xenopus laevis. J Mol Biol. 1966 Aug;19(2):399–422. doi: 10.1016/s0022-2836(66)80013-x. [DOI] [PubMed] [Google Scholar]
- Craig N., Perry R. P. Persistent cytoplasmic synthesis of ribosomal proteins during the selective inhibition of ribosomal RNA synthesis. Nat New Biol. 1971 Jan 20;229(3):75–80. doi: 10.1038/newbio229075a0. [DOI] [PubMed] [Google Scholar]
- Daskal Y., Prestayko A. W., Busch H. Ultrastructural and biochemical studies of the isolated fibrillar component of nucleoli from Novikoff hepatoma ascites cells. Exp Cell Res. 1974 Sep;88(1):1–14. doi: 10.1016/0014-4827(74)90611-9. [DOI] [PubMed] [Google Scholar]
- ELSDALE T. R., FISCHBERG M., SMITH S. A mutation that reduces nucleolar number in Xenopus laevis. Exp Cell Res. 1958 Jun;14(3):642–643. doi: 10.1016/0014-4827(58)90175-7. [DOI] [PubMed] [Google Scholar]
- Goldblatt P. J., Sullivan R. J. Sequential morphological alterations in hepatic cell nucleoli induced by varying doses of actinomycin D. Cancer Res. 1970 May;30(5):1349–1356. [PubMed] [Google Scholar]
- Hay E. D., Gurdon J. B. Fine structure of the nucleolus in normal and mutant Xenopus embryos. J Cell Sci. 1967 Jun;2(2):151–162. doi: 10.1242/jcs.2.2.151. [DOI] [PubMed] [Google Scholar]
- Jacob J. Changes in nucleolar ultrastructure during amphibian development. Exp Cell Res. 1969 Feb;54(2):281–284. doi: 10.1016/0014-4827(69)90254-7. [DOI] [PubMed] [Google Scholar]
- Knowland J., Miller L. Reduction of ribosomal RNA synthesis and ribosomal RNA genes in a mutant of Xenopus laevis which organizes only a partial nucleolus. I. Ribosomal RNA synthesis in embryos of different nucleolar types. J Mol Biol. 1970 Nov 14;53(3):321–328. doi: 10.1016/0022-2836(70)90068-9. [DOI] [PubMed] [Google Scholar]
- MOLLENHAUER H. H. PLASTIC EMBEDDING MIXTURES FOR USE IN ELECTRON MICROSCOPY. Stain Technol. 1964 Mar;39:111–114. [PubMed] [Google Scholar]
- Maisel J. C., McConkey E. H. Nucleolar protein metabolism in actinomycin D treated HeLa cells. J Mol Biol. 1971 Oct 14;61(1):251–255. doi: 10.1016/0022-2836(71)90221-x. [DOI] [PubMed] [Google Scholar]
- Miller L., Gurdon J. B. Mutations affecting the size of the nucleolus in Xenopus laevis. Nature. 1970 Sep 12;227(5263):1108–1110. doi: 10.1038/2271108a0. [DOI] [PubMed] [Google Scholar]
- Miller L., Knowland J. Reduction of ribosomal RNA synthesis and ribosomal RNA genes in a mutant of Xenopus laevis which organizes only a partial nucleolus. II. The number of ribosomal RNA genes in animals of different nucleolar types. J Mol Biol. 1970 Nov 14;53(3):329–338. doi: 10.1016/0022-2836(70)90069-0. [DOI] [PubMed] [Google Scholar]
- Miller L., Knowland J. The number and activity of ribosomal RNA genes in Xenopus laevis embryos carrying partial deletions in both nucleolar organizers. Biochem Genet. 1972 Feb;6(1):65–73. doi: 10.1007/BF00485967. [DOI] [PubMed] [Google Scholar]
- Noel J. S., Dewey W. C., Abel J. H., Jr, Thompson R. P. Ultrastructure of the nucleolus during the Chinese hamster cell cycle. J Cell Biol. 1971 Jun;49(3):830–847. doi: 10.1083/jcb.49.3.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perry R. P., La Torre J., Kelley D. E., Greenberg J. R. On the lability of poly(A) sequences during extraction of messenger RNA from polyribosomes. Biochim Biophys Acta. 1972 Mar 14;262(2):220–226. doi: 10.1016/0005-2787(72)90236-5. [DOI] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheer U., Trendelenburg F., Franke W. W. Effects of actinomycin D on the association of newly formed ribonucleoproteins with the cistrons of ribosomal RNA in Triturus oocytes. J Cell Biol. 1975 Apr;65(1):163–179. doi: 10.1083/jcb.65.1.163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soeiro R., Basile C. Non-ribosomal nucleolar proteins in HeLa cells. J Mol Biol. 1973 Sep 25;79(3):507–519. doi: 10.1016/0022-2836(73)90402-6. [DOI] [PubMed] [Google Scholar]
- Swift H., Stevens B. J. Nucleolar-chromosomal interaction in microspores of maize. Natl Cancer Inst Monogr. 1966 Dec;23:145–166. [PubMed] [Google Scholar]
- Toniolo D., Meiss H. K., Basilico C. A temperature-sensitive mutation affecting 28S ribosomal RNA production in mammalian cells. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1273–1277. doi: 10.1073/pnas.70.4.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Blerkom J., Manes C., Daniel J. C., Jr Development of preimplantation rabbit embryos in vivo and in vitro. I. An ultrastructural comparison. Dev Biol. 1973 Dec;35(2):262–282. doi: 10.1016/0012-1606(73)90023-7. [DOI] [PubMed] [Google Scholar]
- WALLACE H. The development of anucleolate embryos of Xenopus laevis. J Embryol Exp Morphol. 1960 Dec;8:405–413. [PubMed] [Google Scholar]
- Wu R. S., Kumar A., Warner J. R. Ribosome formation is blocked by camptothecin, a reversible inhibitor of RNA synthesis. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3009–3014. doi: 10.1073/pnas.68.12.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]