Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Dec 1;71(3):693–703. doi: 10.1083/jcb.71.3.693

Studies on cell communication with enucleated human fibroblasts

PMCID: PMC2109796  PMID: 993266

Abstract

Metabolic cooperation, the correction of the mutant phenotype in cells deficient in hypoxanthine phosphoribosyltransferase (HPRT-) by intimate contact with normal cells (HPRT+), represents a form of cell communication that is easily studied with radioautography. In the present study it was found that the formation of cell junctions needed for communication does not require protein synthesis nor is it under the immediate control of the cell nucleus. Enucleated normal cells efficiently communicate with HPRT- mutant cells. The effectiveness of enucleated cells as donors in metabolic cooperation provides evidence that it is the transfer of small molecules, nucleotide, or nucleotide derivatives that is responsible for correction of the mutant phenotype. Karyoplasts (nuclei with small amounts of cytoplasm surrounded by a plasma membrane) are unable to efficiently communicate with intact cells. The utilization of [3H]hypoxanthine by communicating mixtures of HPRT+ and HPRT- human cells is not significantly different than in the normal cells alone. Metabolic cooperation, as studied involves a redistribution of purine-containing compounds among communicating cells.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bürk R. R., Pitts J. D., Subak-Sharpe J. H. Exchange between hamster cells in culture. Exp Cell Res. 1968 Oct;53(1):297–301. doi: 10.1016/0014-4827(68)90380-7. [DOI] [PubMed] [Google Scholar]
  2. Corsaro C. M., Migeon B. R. Quantitation of contact-feeding between somatic cells in culture. Exp Cell Res. 1975 Oct 1;95(1):39–46. doi: 10.1016/0014-4827(75)90606-0. [DOI] [PubMed] [Google Scholar]
  3. Cox R. P., Krauss M. K., Silvers D. N., Dancis D. Skin-biopsy site and success of fibroblast culture. Lancet. 1972 Dec 23;2(7791):1373–1374. doi: 10.1016/s0140-6736(72)92826-7. [DOI] [PubMed] [Google Scholar]
  4. Cox R. P., Krauss M. R., Balis M. E., Dancis J. Communication between normal and enzyme deficient cells in tissue culture. Exp Cell Res. 1972 Sep;74(1):251–268. doi: 10.1016/0014-4827(72)90503-4. [DOI] [PubMed] [Google Scholar]
  5. Cox R. P., Krauss M. R., Balis M. E., Dancis J. Evidence for transfer of enzyme product as the basis of metabolic cooperation between tissue culture fibroblasts of Lesch-Nyhan disease and normal cells. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1573–1579. doi: 10.1073/pnas.67.3.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox R. P., Krauss M. R., Balis M. E., Dancis J. Metabolic cooperation in cell culture: studies of the mechanisms of cell interaction. J Cell Physiol. 1974 Oct;84(2):237–252. doi: 10.1002/jcp.1040840210. [DOI] [PubMed] [Google Scholar]
  7. Gilula N. B., Reeves O. R., Steinbach A. Metabolic coupling, ionic coupling and cell contacts. Nature. 1972 Feb 4;235(5336):262–265. doi: 10.1038/235262a0. [DOI] [PubMed] [Google Scholar]
  8. Goldman R. D., Pollack R., Hopkins N. H. Preservation of normal behavior by enucleated cells in culture. Proc Natl Acad Sci U S A. 1973 Mar;70(3):750–754. doi: 10.1073/pnas.70.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goldman R. D., Pollack R. Uses of enucleated cells. Methods Cell Biol. 1974;8(0):123–143. doi: 10.1016/s0091-679x(08)60448-3. [DOI] [PubMed] [Google Scholar]
  10. Kanno Y., Loewenstein W. R. Cell-to-cell passage of large molecules. Nature. 1966 Nov 5;212(5062):629–630. doi: 10.1038/212629a0. [DOI] [PubMed] [Google Scholar]
  11. Nakamura H., Littlefield J. W. Purification, properties, and synthesis of dihydrofolate reductase from wild type and methotrexate-resistant hamster cells. J Biol Chem. 1972 Jan 10;247(1):179–187. [PubMed] [Google Scholar]
  12. Pappas G. D., Bennett M. V. Specialized junctions involved in electrical transmission between neurons. Ann N Y Acad Sci. 1966 Jul 14;137(2):495–508. doi: 10.1111/j.1749-6632.1966.tb50177.x. [DOI] [PubMed] [Google Scholar]
  13. Prescott D. M., Myerson D., Wallace J. Enucleation of mammalian cells with cytochalasin B. Exp Cell Res. 1972;71(2):480–485. doi: 10.1016/0014-4827(72)90322-9. [DOI] [PubMed] [Google Scholar]
  14. Stoker M. The effects of topoinhibition and cytochalasin B on metabolic cooperation. Cell. 1975 Oct;6(2):253–257. doi: 10.1016/0092-8674(75)90016-1. [DOI] [PubMed] [Google Scholar]
  15. Subak-Sharpe H., Bürk R. R., Pitts J. D. Metabolic co-operation between biochemically marked mammalian cells in tissue culture. J Cell Sci. 1969 Mar;4(2):353–367. doi: 10.1242/jcs.4.2.353. [DOI] [PubMed] [Google Scholar]
  16. WAYMOUTH C. Rapid proliferation of sublines of NCTC clone 929 (strain L) mouse cells in a simple chemically defined medium (MB 752/1). J Natl Cancer Inst. 1959 May;22(5):1003–1017. doi: 10.1093/jnci/22.5.1003. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES