Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Jul 1;70(1):33–46. doi: 10.1083/jcb.70.1.33

Metabolism of 125I-labeled lipoproteins by the isolated rat lung

PMCID: PMC2109798  PMID: 180034

Abstract

The capacity of the isolated perfused rat lung to metabolize the protein moieties of serum lipoproteins was assessed using homologous (rat) and heterologous (human) plasma lipoproteins. The protein and lipid moieties of the plasma lipoproteins were labeled in vivo with Na[125I]. In selected cases the lipoprotein peptides were labeled in vivo with 14C- or 3H-labeled amino acids. Uptake of lipoprotein label during perfusion was monitored by measure of losses in perfusate label and by rises in pulmonary tissue labeling as shown by radioassay and by light and electron microscope radioautography. Lipoprotein degradation was assessed by fractionation of perfusate and lung tissue radioactive material into trichloroacetic acid (TCA)-isoluble, TCA-soluble, and ether-ethanol-soluble fractions. When heparin was included in the perfusion medium, there was selective degradation of the protein portion of very low density lipoprotein (VLDL) in the perfusate and concomitant uptake of radioactive label by the lungs. Low density lipoprotein (LDL)) was neither taken up nor catabolized by the isolated rat lung in the absence or presence of heparin. By light and electron microscopy, the label was localized over the interalveolar septa, predominantly the capillary endothelium. Disappearance of TCA-insoluble radioactivity from the perfusate was associated with the generation of both TCA-soluble iodide and noniodide radioactivity. Greater than 50% of the radioactive label taken up by the lungs was found in the delipidated TCA-insoluble fraction. This study provides in vitro evidence for pulmonary catabolism of VLDL apolipoproteins and uptake of peptide catabolic products of VLDL by the lung.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRAGDON J. H., GORDON R. S., Jr Tissue distribution of C14 after the intravenous injection of labeled chylomicrons and unesterified fatty acids in the rat. J Clin Invest. 1958 Apr;37(4):574–578. doi: 10.1172/JCI103640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bailey J. M., Butler J. Cholesterol uptake from doubly-labeled alpha-lipoproteins by cells in tissue culture. Arch Biochem Biophys. 1973 Nov;159(1):580–581. doi: 10.1016/0003-9861(73)90491-8. [DOI] [PubMed] [Google Scholar]
  3. Bassett D. J., Fisher A. B., Rabinowitz J. L. Effect of hypoxia on incorporation of glucose carbons into lipids by isolated rat lung. Am J Physiol. 1974 Nov;227(5):1103–1108. doi: 10.1152/ajplegacy.1974.227.5.1103. [DOI] [PubMed] [Google Scholar]
  4. Bergman E. N., Havel R. J., Wolfe B. M., Bohmer T. Quantitative studies of the metabolism of chylomicron triglycerides and cholesterol by liver and extrahepatic tissues of sheep and dogs. J Clin Invest. 1971 Sep;50(9):1831–1839. doi: 10.1172/JCI106674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bierman E. L., Albers J. J. Lipoprotein uptake by cultured human arterial smooth muscle cells. Biochim Biophys Acta. 1975 May 22;388(2):198–202. doi: 10.1016/0005-2760(75)90124-1. [DOI] [PubMed] [Google Scholar]
  6. Bierman E. L., Eisenberg S., Stein O., Stein Y. Very low density lipoprotein "remnant" particles: uptake by aortic smooth muscle cells in culture. Biochim Biophys Acta. 1973 Nov 2;329(1):163–169. doi: 10.1016/0304-4165(73)90021-4. [DOI] [PubMed] [Google Scholar]
  7. Bierman E. L., Stein O., Stein Y. Lipoprotein uptake and metabolism by rat aortic smooth muscle cells in tissue culture. Circ Res. 1974 Jul;35(1):136–150. doi: 10.1161/01.res.35.1.136. [DOI] [PubMed] [Google Scholar]
  8. Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
  9. Borensztajn J., Robinson D. S. The effect of fasting on the utilization of chylomicron triglyceride fatty acids in relation to clearing factor lipase (lipoprotein lipase) releasable by heparin in the perfused rat heart. J Lipid Res. 1970 Mar;11(2):111–117. [PubMed] [Google Scholar]
  10. Capuzzi D. M., Rothman V., Margolis S. The regulation of lipogenesis by cyclic nucleotides in intact hepatocytes prepared by a simplified technique. J Biol Chem. 1974 Feb 25;249(4):1286–1294. [PubMed] [Google Scholar]
  11. Eisenberg S., Bilheimer D. W., Levy R. I., Lindgren F. T. On the metabolic conversion of human plasma very low density lipoprotein to low density lipoprotein. Biochim Biophys Acta. 1973 Dec 20;326(3):361–377. doi: 10.1016/0005-2760(73)90138-0. [DOI] [PubMed] [Google Scholar]
  12. Eisenberg S., Rachmilewitz D. Metabolism of rat plasma very low density lipoprotein. I. Fate in circulation of the whole lipoprotein. Biochim Biophys Acta. 1973 Dec 20;326(3):378–390. doi: 10.1016/0005-2760(73)90139-2. [DOI] [PubMed] [Google Scholar]
  13. Eisenberg S., Rachmilewitz D. Metabolism of rat plasma very low density lipoprotein. II. Fate in circulation of apoprotein subunits. Biochim Biophys Acta. 1973 Dec 20;326(3):391–405. doi: 10.1016/0005-2760(73)90140-9. [DOI] [PubMed] [Google Scholar]
  14. FELTS J. M. BIOCHEMISTRY OF THE LUNG. Health Phys. 1964 Dec;10:973–979. doi: 10.1097/00004032-196412000-00016. [DOI] [PubMed] [Google Scholar]
  15. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  16. Fishman A. P., Pietra G. G. Handling of bioactive materials by the lung (second of two parts). N Engl J Med. 1974 Oct 31;291(18):953–959. doi: 10.1056/NEJM197410312911808. [DOI] [PubMed] [Google Scholar]
  17. Gambetti P., Autilio-Gambetti L. A., Gonatas N. K., Shafer B. Protein synthesis in synaptosomal fractions. Ultrastructural radioautographic study. J Cell Biol. 1972 Mar;52(3):526–535. doi: 10.1083/jcb.52.3.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Godinez R. I., Longmore W. J. Use of the isolated perfused rat lung in studies on lung lipid metabolism. J Lipid Res. 1973 Mar;14(2):138–144. [PubMed] [Google Scholar]
  19. Goldstein J. L., Brown M. S. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J Biol Chem. 1974 Aug 25;249(16):5153–5162. [PubMed] [Google Scholar]
  20. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. HEINEMANN H. O. Free fatty acid production by rabbit lung tissue in vitro. Am J Physiol. 1961 Oct;201:607–610. doi: 10.1152/ajplegacy.1961.201.4.607. [DOI] [PubMed] [Google Scholar]
  22. KALANT H., MURRAY R. K., MONS W. EFFECT OF EDTA ON LEAKAGE OF PROTEINS FROM SLICES OF NORMAL RAT LIVER AND DAB-INDUCED HEPATOMA. Cancer Res. 1964 May;24:570–581. [PubMed] [Google Scholar]
  23. KAUFMANN E., WERTHEIMER E. Effect of fasting on protein release by liver slices. Am J Physiol. 1957 Jul;190(1):133–138. doi: 10.1152/ajplegacy.1957.190.1.133. [DOI] [PubMed] [Google Scholar]
  24. Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Koga S., Bolis L., Scanu A. M. Isolation and characterization of subunit polypeptides from apoproteins of rat serum lipoprotein. Biochim Biophys Acta. 1971 May 25;236(2):416–430. doi: 10.1016/0005-2795(71)90222-4. [DOI] [PubMed] [Google Scholar]
  26. Kopriwa B. M. A reliable, standardized method for ultrastructural electron microscopic radioautography. Histochemie. 1973 Oct 3;37(1):1–17. doi: 10.1007/BF00306855. [DOI] [PubMed] [Google Scholar]
  27. LaRosa J. C., Levy R. I., Windmueller H. G., Fredrickson D. S. Comparison of the triglyceride lipase of liver, adipose tissue, and postheparin plasma. J Lipid Res. 1972 May;13(3):356–363. [PubMed] [Google Scholar]
  28. Levy R. I., Lees R. S., Fredrickson D. S. The nature of pre beta (very low density) lipoproteins. J Clin Invest. 1966 Jan;45(1):63–77. doi: 10.1172/JCI105324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. MELLANBY J., WILLIAMSON D. H. THE EFFECT OF CALCIUM IONS ON KETONE-BODY PRODUCTION BY RAT-LIVER SLICES. Biochem J. 1963 Sep;88:440–444. doi: 10.1042/bj0880440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Noel S. P., Rubinstein D. Secretion of apolipoproteins in very low density and high density lipoproteins by perfused rat liver. J Lipid Res. 1974 Jul;15(4):301–308. [PubMed] [Google Scholar]
  31. OLIVECRONA T., BELFRAGE P. MECHANISMS FOR REMOVAL OF CHYLE TRIGLYCERIDE FROM THE CIRCULATING BLOOD AS STUDIED WITH (14C)GLYCEROL AND (3H)PALMITIC ACID- LABELED CHYLE. Biochim Biophys Acta. 1965 Feb 1;98:81–93. doi: 10.1016/0005-2760(65)90013-5. [DOI] [PubMed] [Google Scholar]
  32. Patelski J., Waligóra Z., Szulc S. Demonstration and some properties of the phospholipase A, lipase and cholesterol esterase from the aortic wall. J Atheroscler Res. 1967 Jul-Aug;7(4):453–461. doi: 10.1016/s0368-1319(67)80023-1. [DOI] [PubMed] [Google Scholar]
  33. Pietra G. G., Szidon J. P., Fishman A. P. Leaky pulmonary vessels. Trans Assoc Am Physicians. 1972;85:369–376. [PubMed] [Google Scholar]
  34. Salpeter M. M., Szabo M. Sensitivity in electron microscope autoradiography. I. The effect of radiation dose. J Histochem Cytochem. 1972 Jun;20(6):425–434. doi: 10.1177/20.6.425. [DOI] [PubMed] [Google Scholar]
  35. Scow R. O., Hamosh M., Blanchette-Mackie E. J., Evans A. J. Uptake of blood triglyceride by various tissues. Lipids. 1972 Aug;7(8):497–505. doi: 10.1007/BF02533015. [DOI] [PubMed] [Google Scholar]
  36. Smith U., Ryan J. W. Electron microscopy of endothelial and epithelial components of the lungs: correlations of structure and function. Fed Proc. 1973 Sep;32(9):1957–1966. [PubMed] [Google Scholar]
  37. Stein O., Rachmilewitz D., Sanger L., Eisenberg S., Stein Y. Metabolism of iodinated very low density lipoprotein in the rat. Autoradiographic localization in the liver. Biochim Biophys Acta. 1974 Aug 22;360(2):205–216. doi: 10.1016/0005-2760(74)90170-2. [DOI] [PubMed] [Google Scholar]
  38. Stein O., Stein Y. Comparative uptake of rat and human serum low-density and high-density lipoproteins by rat aortic smooth muscle cells in culture. Circ Res. 1975 Mar;36(3):436–443. doi: 10.1161/01.res.36.3.436. [DOI] [PubMed] [Google Scholar]
  39. Stewart J. E., Schotz M. C. Release of lipoprotein lipase activity from isolated fat cells. II. Effect of heparin. J Biol Chem. 1974 Feb 10;249(3):904–907. [PubMed] [Google Scholar]
  40. WARREN B. A. FIBRINOLYTIC PROPERTIES OF VASCULAR ENDOTHELIUM. Br J Exp Pathol. 1963 Aug;44:365–372. [PMC free article] [PubMed] [Google Scholar]
  41. ZSOLDOS S. J., HEINEMANN H. O. LIPOLYTIC ACTIVITY OF RABBIT AORTA IN VITRO. Am J Physiol. 1964 Mar;206:615–617. doi: 10.1152/ajplegacy.1964.206.3.615. [DOI] [PubMed] [Google Scholar]
  42. ungenberg de Jong J. J., Marsh J. B. Biosynthesis of plasma lipoproteins by rat liver ribosomes. J Biol Chem. 1968 Jan 10;243(1):192–199. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES