Abstract
The specific binding and inhibitory action of (3H)ouabain were employed to localize transport Na,K-ATPase in the euryhaline teleost gill, a NaCl-transporting osmoregulatory tissue in which both enzyme activity and transepithelial transport vary with environmental salinity. In killifish fully adapted to 10%, 100%, or 200% seawater, the gills were internally perfused and externally irrigated in situ. After suitable internal or external exposure to (3H)ouabain, individual gill arches were excised for Na,K-ATPase assay, measurement of radiolabel binding, or quantitative high-resolution autoradiography. Internal exposure to 50 muM ouabain resulted in essentially complete enzyme inhibition, and binding paralleled the increases in enzyme activity at higher salinities; in contrast, external exposure gave minimal and erratic results consistent with leakage of external ouabain into interstitial fluid. (3H)Ouabain autoradiographs demonstrated that, irrespective of exposure or salinity, most of the gill binding was associated with chloride cell. These cells increased in size and number with salinity and, at the subcellular level, the distribution pattern for bound ouabain was always identical to that for the amplified basal-lateral (tubular system) membrane. The combined physiologicmorphologic results constitute final direct proof that chloride cells are the primary site of gill Na,K-ATPase. More important, they provide convincing evidence for unexpected increases in basal-lateral enzyme at higher salinities and thus raise a fundamental objection to the long-postulated role of the Na pump in secretory NaCl transport.
Full Text
The Full Text of this article is available as a PDF (4.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker P. F., Willis J. S. Inhibition of the sodium pump in squid giant axons by cardiac glycosides: dependence on extracellular ions and metabolism. J Physiol. 1972 Jul;224(2):463–475. doi: 10.1113/jphysiol.1972.sp009905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellis R. A., Goertemiller C. C., Jr Cytological effects of salt-stress and localization of transport adenosine triphosphatase in the lateral nasal glands of the desert iguana, Dipsosaurus dorsalis. Anat Rec. 1974 Oct;180(2):285–297. doi: 10.1002/ar.1091800204. [DOI] [PubMed] [Google Scholar]
- Ernst S. A., Goertemiller C. C., Jr, Ellis R. A. The effect of salt regimens on the development of (Na+K+)-dependent ATPase activity during the growth of salt glands of ducklings. Biochim Biophys Acta. 1967 Sep 9;135(4):682–692. doi: 10.1016/0005-2736(67)90098-3. [DOI] [PubMed] [Google Scholar]
- Ernst S. A. Transport adenosine triphosphatase cytochemistry. II. Cytochemical localization of ouabin-sensitive, potassium-dependent phosphatase activity in the secretory epithelium of the avian salt gland. J Histochem Cytochem. 1972 Jan;20(1):23–38. doi: 10.1177/20.1.23. [DOI] [PubMed] [Google Scholar]
- Forrest J. N., Jr, Cohen A. D., Schon D. A., Epstein F. H. Na transport and Na-K-ATPase in gills during adaptation to seawater: effects of cortisol. Am J Physiol. 1973 Mar;224(3):709–713. doi: 10.1152/ajplegacy.1973.224.3.709. [DOI] [PubMed] [Google Scholar]
- Forster R. P. Use of Thin Kidney Slices and Isolated Renal Tubules for Direct Study of Cellular Transport Kinetics. Science. 1948 Jul 16;108(2794):65–67. doi: 10.1126/science.108.2794.65-a. [DOI] [PubMed] [Google Scholar]
- Glynn I. M., Karlish S. J. The sodium pump. Annu Rev Physiol. 1975;37:13–55. doi: 10.1146/annurev.ph.37.030175.000305. [DOI] [PubMed] [Google Scholar]
- Kamiya M. Sodium-potassium-activated adenosinetriphosphatase in isolated chloride cells from eel gills. Comp Biochem Physiol B. 1972 Nov 15;43(3):611–617. doi: 10.1016/0305-0491(72)90145-9. [DOI] [PubMed] [Google Scholar]
- Karnaky K. J., Jr, Ernst S. A., Philpott C. W. Teleost chloride cell. I. Response of pupfish Cyprinodon variegatus gill Na,K-ATPase and chloride cell fine structure to various high salinity environments. J Cell Biol. 1976 Jul;70(1):144–156. doi: 10.1083/jcb.70.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirschner L. B. Ventral aortic pressure and sodium fluxes in perfused eel gills. Am J Physiol. 1969 Aug;217(2):596–604. doi: 10.1152/ajplegacy.1969.217.2.596. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lam T. J. Evidence of loss of C14-inulin via the head region of the threespine stickleback, Gasterosteus aculeatus, form trachurus. Comp Biochem Physiol. 1969 Jan;28(1):459–463. doi: 10.1016/0010-406x(69)91362-0. [DOI] [PubMed] [Google Scholar]
- Maetz J., Bornancin M. Biochemical and biophysical aspects of salt excretion by chloride cells in teleosts. Fortschr Zool. 1975;23(2-3):322–362. [PubMed] [Google Scholar]
- Masoni A., Payan P. Urea, inulin and para-amino-hippuric acid (PAH) excretion by the gills of the eel, Anguilla anguilla L. Comp Biochem Physiol A Comp Physiol. 1974 Apr 1;47(4):1241–1244. doi: 10.1016/0300-9629(74)90098-x. [DOI] [PubMed] [Google Scholar]
- Mills J. W., Ernst S. A. Localization of sodium pump sites in frog urinary bladder. Biochim Biophys Acta. 1975 Jan 28;375(2):268–273. doi: 10.1016/0005-2736(75)90194-7. [DOI] [PubMed] [Google Scholar]
- Mizuhira V., Amakawa T., Yamashina S., Shirai N., Utida S. Electron microscopic studies on the localization of sodium ions and sodium-potassium-activated adenosinetriphosphatase in chloride cells of eel gills. Exp Cell Res. 1970 Feb;59(2):346–348. doi: 10.1016/0014-4827(70)90613-0. [DOI] [PubMed] [Google Scholar]
- Motais R., Garcia-Romeu F. Transport mechanisms in the teleostean gill and amphibian skin. Annu Rev Physiol. 1972;34:141–176. doi: 10.1146/annurev.ph.34.030172.001041. [DOI] [PubMed] [Google Scholar]
- Quinton P. M., Wright E. M., Tormey J. M. Localization of sodium pumps in the choroid plexus epithelium. J Cell Biol. 1973 Sep;58(3):724–730. doi: 10.1083/jcb.58.3.724. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RICHARDSON K. C., JARETT L., FINKE E. H. Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 1960 Nov;35:313–323. doi: 10.3109/10520296009114754. [DOI] [PubMed] [Google Scholar]
- Rankin J. C., Maetz J. A perfused teleostean gill preparation: vascular actions of neurohypophysial hormones and catecholamines. J Endocrinol. 1971 Dec;51(4):621–635. doi: 10.1677/joe.0.0510621. [DOI] [PubMed] [Google Scholar]
- Ritch R., Philpott C. W. Repeating particles associated with an electrolyte-transport membrane. Exp Cell Res. 1969 Apr;55(1):17–24. doi: 10.1016/0014-4827(69)90448-0. [DOI] [PubMed] [Google Scholar]
- Sargent J. R., Thompson A. J. The nature and properties of the inducible sodium-plus-potassium ion-dependent adenosine triphosphatase in the gills of eels (Anguilla anguilla) adapted to fresh water and sea water. Biochem J. 1974 Oct;144(1):69–75. doi: 10.1042/bj1440069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sargent J. R., Thomson A. J., Bornancin M. Activities and localization of succinic dehydrogenase and Na-+/K-+-activated adenosine triphosphatase in the gills of fresh water and sea water eels (Anguilla anguilla). Comp Biochem Physiol B. 1975 May 15;51(1):75–79. doi: 10.1016/0305-0491(75)90362-4. [DOI] [PubMed] [Google Scholar]
- Schwartz A., Lindenmayer G. E., Allen J. C. The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects. Pharmacol Rev. 1975 Mar;27(01):3–134. [PubMed] [Google Scholar]
- Skadhauge E. The mechanism of salt and water absorption in the intestine of the eel (Anguilla anguilla) adapted to waters of various salinities. J Physiol. 1969 Sep;204(1):135–158. doi: 10.1113/jphysiol.1969.sp008904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stirling C. E., Kinter W. B. High-resolution radioautography of galactose-3H accumulation in rings of hamster intestine. J Cell Biol. 1967 Dec;35(3):585–604. doi: 10.1083/jcb.35.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stirling C. E. Radioautographic localization of sodium pump sites in rabbit intestine. J Cell Biol. 1972 Jun;53(3):704–714. doi: 10.1083/jcb.53.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]