Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1976 Jul 1;70(1):226–238. doi: 10.1083/jcb.70.1.226

Sulfhydryls and the in vitro polymerization of tubulin

PMCID: PMC2109814  PMID: 945278

Abstract

The free sulfhydryls of brain tubulin prepared by cyclic polymerization procedures both with and without glycerol have been examined. The average free sulfhydryl titer of tubulin prepared with glycerol (7.0 sulfhydryls/55,000 mol wt) is greater than that of tubulin prepared without glycerol (4.0 sulfhydryls/55,000 mol wt). Diamide, a sulfhydryl- oxidizing agent, inhibits the polymerization of tubulin. Diamide also disperses the 20S and 30S oligomers of tubulin seen in analytical ultracentrifuge patterns of tubulin solutions and, depending on the temperature at which diamide is added, converts all or part of the oligomeric material to 6S dimers. Electron microscopy demonstrates that diamide also destroys the 450-A ring structures characteristic of tubulin solutions. All diamide effects are reversible by the addition of 10 mM dithioerythreitol, a sulfhydryl-reducing agent. That diamide interacts with sulfhydryls on tubulin is directly demonstrated by a 50% decrease in the free sulfhydryl titer of tubulin measured after diamide treatment. Concentrations of CaCl2 which inhibit polymerization also decrease the free sulfhydryl titer of tubulin.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barra H. S., Arce C. A., Rodríguez J. A., Caputto R. Some common properties of the protein that incorporates tyrosine as a single unit and the microtubule proteins. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1384–1390. doi: 10.1016/0006-291x(74)90351-9. [DOI] [PubMed] [Google Scholar]
  2. Borisy G. G., Marcum J. M., Olmsted J. B., Murphy D. B., Johnson K. A. Purification of tubulin and associated high molecular weight proteins from porcine brain and characterization of microtubule assembly in vitro. Ann N Y Acad Sci. 1975 Jun 30;253:107–132. doi: 10.1111/j.1749-6632.1975.tb19196.x. [DOI] [PubMed] [Google Scholar]
  3. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  4. Eipper B. A. Properties of rat brain tubulin. J Biol Chem. 1974 Mar 10;249(5):1407–1416. [PubMed] [Google Scholar]
  5. Erickson H. P. Assembly of microtubules from preformed, ring-shaped protofilaments and 6-S tubulin. J Supramol Struct. 1974;2(2-4):393–411. doi: 10.1002/jss.400020228. [DOI] [PubMed] [Google Scholar]
  6. Feit H., Shelanski M. L. Is tubulin a glycoprotein? Biochem Biophys Res Commun. 1975 Oct 6;66(3):920–927. doi: 10.1016/0006-291x(75)90728-7. [DOI] [PubMed] [Google Scholar]
  7. Grassetti D. R., Murray J. F., Jr Determination of sulfhydryl groups with 2,2'- or 4,4'-dithiodipyridine. Arch Biochem Biophys. 1967 Mar;119(1):41–49. doi: 10.1016/0003-9861(67)90426-2. [DOI] [PubMed] [Google Scholar]
  8. Kirschner M. W., Williams R. C. The mechanism of microtubule assembly in vitro. J Supramol Struct. 1974;2(2-4):412–428. doi: 10.1002/jss.400020229. [DOI] [PubMed] [Google Scholar]
  9. Kosower E. M., Correa W., Kinon B. J., Kosower N. S. Glutathione. VII. Differentiation among substrates by the thiol-oxidizing agent, diamide. Biochim Biophys Acta. 1972 Mar 30;264(1):39–44. doi: 10.1016/0304-4165(72)90114-6. [DOI] [PubMed] [Google Scholar]
  10. Kosower E. M., Kosower N. S. Lest I forget thee, glutathione. Nature. 1969 Oct 11;224(5215):117–120. doi: 10.1038/224117a0. [DOI] [PubMed] [Google Scholar]
  11. Kosower E. M., Werman R. New step in transmitter release at the myoneural junction. Nat New Biol. 1971 Sep 22;233(38):121–123. doi: 10.1038/newbio233121a0. [DOI] [PubMed] [Google Scholar]
  12. Kosower N. S., Song K. R., Kosower E. M., Correa W. Glutathione. II. Chemical aspects of azoester procedure for oxidation to disulfide. Biochim Biophys Acta. 1969 Oct 7;192(1):8–14. doi: 10.1016/0304-4165(69)90003-8. [DOI] [PubMed] [Google Scholar]
  13. Kuriyama R., Sakai H. Role of tubulin-SH groups in polymerization to microtubules. Functional-SH groups in tubulin for polymerization. J Biochem. 1974 Sep;76(3):651–654. doi: 10.1093/oxfordjournals.jbchem.a130609. [DOI] [PubMed] [Google Scholar]
  14. Kuriyama R., Sakai H. Viscometric demonstration of tubulin polymerization. J Biochem. 1974 Mar;75(3):463–471. doi: 10.1093/oxfordjournals.jbchem.a130415. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lee J. C., Frigon R. P., Timasheff S. N. The chemical characterization of calf brain microtubule protein subunits. J Biol Chem. 1973 Oct 25;248(20):7253–7262. [PubMed] [Google Scholar]
  17. Nath J., Rebhun J. I. Effects of caffeine and other methylxanthines on the development and metabolism of sea urchin eggs. Involvement of NADP and glutathione. J Cell Biol. 1976 Mar;68(3):440–450. doi: 10.1083/jcb.68.3.440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Okazaki Y., Mabuchi I., Kimura I., Sakai H. Binding sites of -SH reagents in dividing sea urchin egg. Exp Cell Res. 1973 Dec;82(2):325–334. doi: 10.1016/0014-4827(73)90349-2. [DOI] [PubMed] [Google Scholar]
  19. Price P. A., Stein W. H., Moore S. Effect of divalent cations on the reduction and re-formation of the disulfide bonds of deoxyribonuclease. J Biol Chem. 1969 Feb 10;244(3):929–932. [PubMed] [Google Scholar]
  20. Rebhun L. I., Mellon M., Jemiolo D., Nath J., Ivy N. Regulation of size and birefringence of the in vivo mitotic apparatus. J Supramol Struct. 1974;2(2-4):466–485. doi: 10.1002/jss.400020232. [DOI] [PubMed] [Google Scholar]
  21. Weisenberg R. C. Microtubule formation in vitro in solutions containing low calcium concentrations. Science. 1972 Sep 22;177(4054):1104–1105. doi: 10.1126/science.177.4054.1104. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES